【題目】如圖, ,,直線經(jīng)過點.,于點,將射線繞點按逆時針方向旋轉(zhuǎn),與直線交于點.

(1), ;

(2)求證: ;

(3)的外心在其內(nèi)部,直接寫出的取值范圍.

【答案】1;(2)見解析;(3

【解析】

1)利用四邊形內(nèi)角和等于360度得:∠B+ADC=180°,而∠ADC+EDC=180°,即可求解;

2)證明ABC≌△EDCAAS)即可求解;

3)當∠ABC=α=90°時,ABC的外心在其直角邊上,∠ABC=α90°時,ABC的外心在其外部,即可求解.

解:(1)在四邊形BADC中,∠B+ADC=360°-BAD-DCB=180°,

而∠ADC+EDC=180°

∴∠ABC=PDC=α=125°,

故答案為125

2)如圖,

,又繞點逆時針旋轉(zhuǎn)得到射線,

,又,

,

在四邊形中,

又∵

中,

,

3)當∠ABC=α=90°時,ABC的外心在其直角邊上,

ABC=α90°時,ABC的外心在其外部,

45°α135°

故:45°α90°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,ABBC,以AB為直徑的半圓分別交AC、BC于點D、E兩點,BF⊙O相切于點B,交AC的延長線于點F

1)求證:DAC的中點;

2)若AB12,sinCAE,求CF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家為支持大學生創(chuàng)業(yè),提供小額無息貸款,學生王芳享受政策無息貸款36000元用來代理品牌服裝的銷售.已知該品牌服裝進價每件40元,日銷售y(件)與銷售價x(元/件)之間的關系如圖所示(實線),每天付員工的工資每人每天82元,每天應支付其它費用106元.

(1)求日銷售y(件)與銷售價x (元/件)之間的函數(shù)關系式;

(2)若暫不考慮還貸,當某天的銷售價為48元/件時,收支恰好平衡(收入=支出),求該店員工人數(shù);

(3)若該店只有2名員工,則該店至少需要多少天才能還清貸款,此時,每件服裝的價格應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,弦于點,過點的切線交的延長線于點.

1)已知,求的大。ㄓ煤的式子表示);

2)取的中點,連接,請補全圖形;若,,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程隊承接了60萬平方米的綠化工程,由于情況有變,……設原計劃每天綠化的面積為萬平方米,列方程為,根據(jù)方程可知省略的部分是(

A. 實際工作時每天的工作效率比原計劃提高了結(jié)果提前30天完成了這一任務

B. 實際工作時每天的工作效率比原計劃提高了,結(jié)果延誤30天完成了這一任務

C. 實際工作時每天的工作效率比原計劃降低了,結(jié)果延誤30天完成了這一任務

D. 實際工作時每天的工作效率比原計劃降低了,結(jié)果提前30天完成了這一任務

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形和正六邊形 邊長均為1,如圖所示,把正方形放置在正六邊形外,使邊與邊重合,按下列步驟操作:將正方形在正六邊形外繞點逆時針旋轉(zhuǎn),使邊與邊重合,完成第一次旋轉(zhuǎn)再繞點逆時針旋轉(zhuǎn),使邊與邊重合,完成第二次旋轉(zhuǎn);此時點經(jīng)過路徑的長為_________:若按此方式旋轉(zhuǎn),共完成六次,在這個過程中,之間距離的最大值是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過兩個確定點AB,其中A為頂點,B為拋物線與y軸的交點.

(1)由拋物線的性質(zhì)可知,該拋物線還經(jīng)過一個確定點C,請寫出找點C的方法(不要求畫圖);

(2)A(1,4)、B(0,3),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,河流的兩岸PQ、MN互相平行,河岸PQ上有一排小樹,已知相鄰兩樹之間的距離CD=50米,某人在河岸MNA處測得∠DAN=35°,然后沿河岸走了120米到達B處,測得∠CBN=70°.求河流的寬度CE(結(jié)果保留兩個有效數(shù)字).(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖1所示,成本y2與銷售月份x之間的關系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)

(1)已知6月份這種蔬菜的成本最低,此時出售每千克的收益是多少元?(收益=售價﹣成本)

(2)哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.

(3)已知市場部銷售該種蔬菜4、5兩個月的總收益為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克,求4、5兩個月的銷售量分別是多少萬千克?

查看答案和解析>>

同步練習冊答案