【題目】若直角三角形的一個銳角為20°,則另一個銳角等于__________

【答案】70°

【解析】

根據(jù)直角三角形兩個銳角互為余角可求得另一個銳角的度數(shù).

解:∵直角三角形的一個銳角是20°,
∴它的另一個銳角的大小為90°-20°=70°
故答案為:70°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線交于A、B兩點(diǎn),其中點(diǎn)A在y軸上,點(diǎn)B坐標(biāo)為(﹣4,﹣5),點(diǎn)P為y軸左側(cè)的拋物線上一動點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,交AB于點(diǎn)D

(1)求拋物線的解析式;

(2)以O(shè),A,P,D為頂點(diǎn)的平行四邊形是否存在?如存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由

(3)當(dāng)點(diǎn)P運(yùn)動到直線AB下方某一處時,過點(diǎn)P作PM⊥AB,垂足為M,連接PA使△PAM為等腰直角三角形,請直接寫出此時點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)過(﹣2,4),(﹣4,4)兩點(diǎn)

(1)求二次函數(shù)的解析式;

(2)將沿x軸翻折,再向右平移2個單位,得到拋物線,直線y=m(m>0)交于M、N兩點(diǎn),求線段MN的長度(用含m的代數(shù)式表示);

(3)在(2)的條件下,交于A、B兩點(diǎn),如果直線y=m與、的圖象形成的封閉曲線交于C、D兩點(diǎn)(C在左側(cè)),直線y=﹣m與的圖象形成的封閉曲線交于E、F兩點(diǎn)(E在左側(cè)),求證:四邊形CEFD是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點(diǎn)D,交AC的延長線于點(diǎn)E,連接ED,BE

(1)求證:△ABD∽△AEB;

(2)當(dāng)時,求tanE;

(3)在(2)的條件下,作∠BAC的平分線,與BE交于點(diǎn)F,若AF=2,求⊙C的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好的保護(hù)美麗圖畫的邛海濕地,西昌市污水處理廠決定先購買A、B兩型污水處理設(shè)備共20臺,對邛海濕地周邊污水進(jìn)行處理,每臺A型污水處理設(shè)備12萬元,每臺B型污水處理設(shè)備10萬元.已知1臺A型污水處理設(shè)備和2臺B型污水處理設(shè)備每周可以處理污水640噸,2臺A型污水處理設(shè)備和3臺B型污水處理設(shè)備每周可以處理污水1080噸

(1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?

(2)經(jīng)預(yù)算,市污水處理廠購買設(shè)備的資金不超過230萬元,每周處理污水的量不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3m36m2n+3mn2分解因式的結(jié)果是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(

A. (﹣a23=﹣a5B. a3a5a15C. a5÷a2a3D. 3a22a21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列數(shù)中最小的是( 。
A.﹣2.5
B.﹣1.5
C.0
D.0.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x=-1不是下列哪一個不等式的解( )
A.2x+1≤-3
B.2x-1≥-3
C.-2x+1≥3
D.-2x-1≤3

查看答案和解析>>

同步練習(xí)冊答案