【題目】在某市開展的“體育、藝術(shù)2+1”活動(dòng)中,某校根據(jù)實(shí)際情況,決定主要開設(shè)A:乒乓球,B:籃球,C:跑步,D:跳繩這四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生喜歡哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖甲、乙所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)你結(jié)合圖中的信息解答下列問題:
(1)求出所抽取的學(xué)生人數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)樣本中喜歡B項(xiàng)目的人數(shù)百分比是 ,其所在扇形統(tǒng)計(jì)圖中的圓心角的度數(shù)是 ;
(3)已知該校有1 000人,根據(jù)樣本估計(jì)全校喜歡跳繩的人數(shù)是多少?
圖甲 圖乙
【答案】(1)100,圖詳見解;(2)20%,72°;(3)280.
【解析】
(1)根據(jù)喜歡C項(xiàng)目的有8人,所占的百分比是8%即可求得調(diào)查的總?cè)藬?shù),進(jìn)而求得喜歡B項(xiàng)目的人數(shù),補(bǔ)全直方圖;
(2)用1減去其它項(xiàng)目的百分比即可求得喜歡B項(xiàng)目的百分比,然后乘以360°即可求得對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)利用總?cè)藬?shù)1000乘以對(duì)應(yīng)的百分比即可求解.
解:(1)抽取的總?cè)藬?shù)是:8÷8%=100(人),
喜歡B項(xiàng)目的人數(shù)是:100×(1-44%-8%-28%)=20(人),補(bǔ)圖如圖.
(2)喜歡B項(xiàng)目的人數(shù)所占的百分比是:1-8%-28%-44%=20%,
對(duì)應(yīng)的扇形圓心角度數(shù)是:360°×20%=72°;
(3)估計(jì)全校喜歡跳繩的人數(shù)為1 000×28%=280(人).
故答案為:(1)100,圖形見解析;(2)20%,72°;(3)280.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形OABC的頂點(diǎn)O(0,0),B(2,2),若菱形繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),每秒旋轉(zhuǎn)45°,則第60秒時(shí),菱形的對(duì)角線交點(diǎn)D的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在x軸的正半軸上,以O(shè)A為直徑作⊙P,C是⊙P上一點(diǎn),過點(diǎn)C的直線y= x+ 與x軸,y軸分別相交于點(diǎn)D,點(diǎn)E,連接AC并延長(zhǎng)與y軸相交于點(diǎn)B,點(diǎn)B的坐標(biāo)為(0, ).
(1)求證:OE=CE;
(2)請(qǐng)判斷直線CD與⊙P位置關(guān)系,證明你的結(jié)論,并求出⊙P半徑的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4),B(1,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1 .
(1)畫出△A1OB1;
(2)在旋轉(zhuǎn)過程中點(diǎn)B所經(jīng)過的路徑長(zhǎng)為;
(3)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售一批名牌襯衣,平均每天可售出20件,每件襯衣盈利40元.為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衣降價(jià)1元,商場(chǎng)平均每天可多售出2件.
(1)若商場(chǎng)平均每天盈利1200元,每件襯衣應(yīng)降價(jià)多少元?
(2)若要使商場(chǎng)平均每天的盈利最多,請(qǐng)你為商場(chǎng)設(shè)計(jì)降價(jià)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對(duì)折,A是對(duì)折后劣弧上的一點(diǎn),∠CAD=110°,則∠B的度數(shù)是( )
A.110°
B.70°
C.60°
D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的面積是12,點(diǎn)D、E、F、G分別是BC、AD、BE、CE的中點(diǎn),則四邊形AFDG的面積是( )
A. 4.5B. 5C. 5.5D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,數(shù)軸上的點(diǎn)A,B.C依次表示數(shù)-2,x,4.某同學(xué)將刻度尺如圖2放置,使刻度尺上的數(shù)字0對(duì)齊數(shù)軸上的點(diǎn)B,發(fā)現(xiàn)點(diǎn)A對(duì)齊刻度1.8cm,點(diǎn)C對(duì)齊刻度5.4cm.
(1)AC= 個(gè)單位長(zhǎng)度;由圖可知數(shù)軸上的一個(gè)單位長(zhǎng)度對(duì)應(yīng)刻度尺上的 cm;數(shù)軸上的點(diǎn)B表示數(shù) ;
(2)已知T是數(shù)軸上一點(diǎn)(不與點(diǎn)A、點(diǎn)B、點(diǎn)C重合),點(diǎn)P表示的數(shù)是t,點(diǎn)P是線段BT的三等分點(diǎn),且TP=2BP.
①如圖3,當(dāng)-2<t<4時(shí),試試猜想線段CT與AP的數(shù)量關(guān)系,并說明理由;
②若|2BT-3AP|=1,請(qǐng)直接寫出所有滿足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列證明過程,并在括號(hào)內(nèi)填上依據(jù).
如圖,點(diǎn)E在AB上,點(diǎn)F在CD上,∠1=∠2,∠B=∠C,求證AB∥CD.
證明:∵∠1=∠2(已知),∠1=∠4( ),
∴∠2= (等量代換),
∴ ∥BF( ),
∴∠3=∠ ( ).
又∵∠B=∠C(已知),
∴∠3=∠B( ),
∴AB∥CD( ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com