【題目】某工廠準(zhǔn)備購買A、B兩種零件,已知A種零件的單價(jià)比B種零件的單價(jià)多20元,而用800元購買A種零件的數(shù)量和用600元購買B種零件的數(shù)量相等
(1)求A、B兩種零件的單價(jià);
(2)根據(jù)需要,工廠準(zhǔn)備購買A、B兩種零件共200件,工廠購買兩種零件的總費(fèi)用不超過14700元,求工廠最多購買A種零件多少件?
【答案】(1)A種零件的單價(jià)為80元,B種零件的單價(jià)為60元;(2)最多購進(jìn)A種零件135件.
【解析】
(1)設(shè)A種零件的單價(jià)是x元,則B種零件的單價(jià)是(x-20)元,根據(jù)“用800元購買A種零件的數(shù)量和用600元購買B種零件的數(shù)量相等”列出方程并解答;
(2)設(shè)購買A種零件a件,則購買B種零件(200-a)件,根據(jù)“購買兩種零件的總費(fèi)用不超過14700元”列出不等式并解答.
解:(1)設(shè)B種零件的單價(jià)為x元,則A零件的單價(jià)為(x+20)元,
則
解得:x=60
經(jīng)檢驗(yàn):x=60是原分式方程的解,x+20=80.
答:A種零件的單價(jià)為80元,B種零件的單價(jià)為60元.
(2)設(shè)購進(jìn)A種零件m件,則購進(jìn)B種零件(200﹣m)件,則有
80m+60(200﹣m)≤14700,
解得:m≤135,
m在取值范圍內(nèi),取最大正整數(shù),m=135.
答:最多購進(jìn)A種零件135件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2-8ax(a<0)的圖像與x軸的正半軸交于點(diǎn)A,它的頂點(diǎn)為P.點(diǎn)C為y軸正半軸上一點(diǎn),直線AC與該圖像的另一交點(diǎn)為B,與過點(diǎn)P且垂直于x軸的直線交于點(diǎn)D,且CB:AB=1:7.
(1)求點(diǎn)A的坐標(biāo)及點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(2)連接BP,若△BDP與△AOC相似(點(diǎn)O為原點(diǎn)),求此二次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,已知四邊形ABCD是正方形,點(diǎn)A在原點(diǎn),點(diǎn)B的坐標(biāo)是(3,1),則點(diǎn)D的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且B(4,0).
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)如果點(diǎn)P(p,0)是x軸上的一個(gè)動(dòng)點(diǎn),則當(dāng)|PC﹣PD|取得最大值時(shí),求p的值;
(3)能否在拋物線第一象限的圖象上找到一點(diǎn)Q,使△QBC的面積最大,若能,請求出點(diǎn)Q的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1個(gè)單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,△ABC的頂點(diǎn)都在格點(diǎn)上,請解答下列問題
(1)畫出將△ABC向左平移4個(gè)單位長度后得到的圖形△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);
(2)畫出將△ABC關(guān)于原點(diǎn)O對(duì)稱的圖形△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初二年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評(píng)價(jià)中,一共抽查了 名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;
(3)請將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有6000名初二學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初二學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形AOBC和四邊形CDEF都是正方形,邊OA在x軸上,邊OB在y軸上,點(diǎn)D在邊CB上,反比例函數(shù)(k>0)在第一象限的圖象經(jīng)過點(diǎn)E,若正方形AOBC和正方形CDEF的面積之差為6,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(方法回顧)證明:三角形中位線定理.
已知:如圖1,中,D、E分別是AB、AC的中點(diǎn).
求證:,.
證明:如圖1,延長DE到點(diǎn)F,使得,連接CF;
請繼續(xù)完成證明過程;
(2)(問題解決)
如圖2,在矩形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若,,,求GF的長.
(3)(思維拓展)
如圖3,在梯形ABCD中,,,,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若,,,求GF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=.將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至矩形AB′C′D′,使得點(diǎn)B′恰好落在對(duì)角線BD上,連接DD′,則DD′的長度為( 。
A. B. C. +1 D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com