【題目】如圖,已知兩點(diǎn)A、B.
(1)畫(huà)出符合要求的圖形
①畫(huà)線(xiàn)段AB;
②延長(zhǎng)線(xiàn)段AB到點(diǎn)C,使BC=AB;
③反向延長(zhǎng)線(xiàn)段AB到點(diǎn)D,使DA=2AB;
④分別取BC、AD的中點(diǎn)M、N.
(2)在(1)的基礎(chǔ)上,已知線(xiàn)段AB的長(zhǎng)度是4cm,求線(xiàn)段MN的長(zhǎng)度.
【答案】(1)見(jiàn)解析; (2)MN=10cm.
【解析】
(1)根據(jù)題意,畫(huà)出圖形即可;
(2)先求出BC=4cm,DA=8cm,再根據(jù)BC、AD的中點(diǎn)M、N,求出BM=2cm,AN=4cm,根據(jù)MN=AN+AB+BM即可解答.
(1)如圖,
(2)∵AB=4cm,BC=AB,DA=2AB,
∴BC=4cm,DA=8cm,
∵BC、AD的中點(diǎn)M、N,
∴BM=2cm,AN=4cm,
∴MN=AN+AB+BM=4+4+2=10cm.
故答案為:(1)見(jiàn)解析; (2)MN=10cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC為銳角,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn),以AD為直角邊且在AD的右側(cè)作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí),如圖1,線(xiàn)段CE、BD的位置關(guān)系為___________,數(shù)量關(guān)系為___________
②當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),如圖2,①中的結(jié)論是否仍然成立,請(qǐng)說(shuō)明理由.
(2)如圖3,如果AB≠AC,∠BAC≠90°,點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng)。探究:當(dāng)∠ACB多少度時(shí),CE⊥BC?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)和點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)分別為和,且.
(1)求線(xiàn)段的長(zhǎng);
(2)點(diǎn)在數(shù)軸上所對(duì)應(yīng)的數(shù)為,且是方程的解,點(diǎn)在線(xiàn)段上,并且,請(qǐng)求出點(diǎn)在數(shù)軸上所對(duì)應(yīng)的數(shù);
(3)在(2)的條件下,線(xiàn)段和分別以個(gè)單位長(zhǎng)度/秒和個(gè)單位長(zhǎng)度/秒的速度同時(shí)向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒,為線(xiàn)段的中點(diǎn),為線(xiàn)段的中點(diǎn),若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:∠BCA=∠BAD;
(2)求DE的長(zhǎng);
(3)求證:BE是⊙O的切線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有個(gè)點(diǎn),點(diǎn)第1次向上跳動(dòng)1個(gè)單位至點(diǎn),緊接著第2次向左跳動(dòng)2個(gè)單位至點(diǎn),第3次向上跳動(dòng)1個(gè)單位到達(dá),第4次向右跳動(dòng)3個(gè)單位到達(dá),第5次又向上跳動(dòng)1個(gè)單位,第6次向左跳動(dòng)4個(gè)單位,…,依此規(guī)律跳動(dòng)下去,點(diǎn)的坐標(biāo)為( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D,E分別在邊BC 和AC上,若AD=AE,則下列結(jié)論錯(cuò)誤的是( )
A.∠ADB=∠ACB+∠CAD
B.∠ADE=∠AED
C.∠CDE= ∠BAD
D.∠AED=2∠ECD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,∠DAB的平分線(xiàn)交CD于點(diǎn)E,交BC的延長(zhǎng)線(xiàn)于點(diǎn)G,∠ABC的平分線(xiàn)交CD于點(diǎn)F,交AD的延長(zhǎng)線(xiàn)于點(diǎn)H,AG與BH交于點(diǎn)O,連接BE,下列結(jié)論錯(cuò)誤的是( )
A. BO=OH B. DF=CE C. DH=CG D. AB=AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:不等式 ≤2+x
(1)解該不等式,并把它的解集表示在數(shù)軸上;
(2)若實(shí)數(shù)a滿(mǎn)足a>2,說(shuō)明a是否是該不等式的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,D為AC延長(zhǎng)線(xiàn)上一點(diǎn),連接BD,在BC邊上取一點(diǎn)E,使得CD=CE,連接AE并延長(zhǎng)交BD于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)求證:AF⊥BD;
(3)連接CF,點(diǎn)C 關(guān)于BD的對(duì)稱(chēng)點(diǎn)是Q,連接FQ,用等式表示線(xiàn)段CF,CQ之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com