【題目】據(jù)圖填空:

1)如圖1,因為∠1=∠2,(已知)

2=∠3,(              。

所以∠1=∠3,

所以ABCD.(            。

2)如圖2,因為∠1110°(已知)

1+∠2180°,(           )

所以∠2=(    。

又因為∠370°,(已知)

所以∠2=∠3

所以ab.(               。

【答案】1)對頂角相等;同位角相等,兩直線平行;(2)鄰補角定義;70°;同位角相等,兩直線平行.

【解析】

1)利用平行線的判定與性質(zhì)即可得到結(jié)果;

2)利用平行線的判定與性質(zhì)即可得到結(jié)果.

1)如圖1,因為∠1=∠2,(已知)

2=∠3,(對頂角相等),

所以∠1=∠3,(等量代換),

所以ABCD.(同位角相等,兩直線平行);

2)如圖2,因為∠1110°(已知),∠1+∠2180°,(鄰補角定義)

所以∠270°,

又因為∠370°,(已知),

所以∠2=∠3

所以ab.(同位角相等,兩直線平行);

故答案為:(1)對頂角相等;同位角相等,兩直線平行;(2)鄰補角定義;70°;同位角相等,兩直線平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商城銷售、兩種型號的電風(fēng)扇,進價分別為元、元,下表是近兩周的銷售情況:

銷售時段

銷售型號

銷售收入

種型號

種型號

第一周

第二周

1)求兩種型號的電風(fēng)扇的銷售單價;

2)若商城準(zhǔn)備用不多于元的金額再采購這兩種型號的電風(fēng)扇共臺,求種型號的電風(fēng)扇最多能采購多少臺?

3)在(2)的條件下商城銷售完這臺電風(fēng)能否實現(xiàn)利潤超過元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,∠A30°,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于的長為半徑作弧,兩弧相交于點E,作射線CEAB于點F,若AF6,則BC的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進價為20元/件.試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件;銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤 (元)與銷售單價 (元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案:
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元.
請比較哪種方案的最大利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點A2 019的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)

(2)已知當(dāng)油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,邊長為4,點F在AB邊上,E為射線AD上一點,正方形ABCD沿直線EF折疊,點A落在G處,已知點G恰好在以AB為直徑的圓上,則CG的最小值等于( )

A.0
B.2
C.4﹣2
D.2 ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元.

(1)這兩次各購進這種襯衫多少件?

(2)若第一批襯衫的售價是200/件,老板想讓這兩批襯衫售完后的總利潤不低于2100元,則第二批襯衫每件至少要售多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雙蓉服裝店老板到廠家購A、B兩種型號的服裝,若購A種型號服裝9件,B種型號服裝10件,需要1810元;若購進A種型號服裝12件,B種型號服裝8件,需要1880元.

(1)求A、B兩種型號的服裝每件分別為多少元?

(2)若銷售一件A型服裝可獲利18元,銷售一件B型服裝可獲利30元,根據(jù)市場需要,服裝店老板決定:購進A型服裝的數(shù)量要比購進B型服裝的數(shù)量的2倍還多4件,且A型服裝最多可購進28件,這樣服裝全部售出后可使總的獲利不少于699元,問有幾種進貨方案?如何進貨?

查看答案和解析>>

同步練習(xí)冊答案