如圖,已知AB∥CD,AD與BC相交于點E,AB=4,CD=8,DE=6,則AE的長等于   
【答案】分析:由于AB∥CD,可證得△ABE∽△DCE,根據(jù)相似三角形所得比例線段,即可求得AE的長.
解答:解:∵AB∥CD,
∴△ABE∽△DCE,
=,
==
即DE=2AE=6;
∴AE=3.
故答案為:3.
點評:此題主要考查了相似三角形的判定和性質(zhì),根據(jù)相似三角形對應邊的比值相等是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、如圖,已知AB=CD且∠ABD=∠BDC,要證∠A=∠C,判定△ABD≌△CDB的方法是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,已知AB∥CD,∠A=38°,則∠1=
142°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB∥CD,∠1=50°25′,則∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知 AB∥CD,∠A=53°,則∠1的度數(shù)是
127°
127°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB∥CD∥EF,那么下列結論中,正確的是( 。

查看答案和解析>>

同步練習冊答案