【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

【答案】(1)證明見解析(2)證明見解析

【解析】分析:(1)由SAS證明△ABD≌△ACE,得出對應邊相等即可

(2)證出∠BAN=∠CAM,由全等三角形的性質(zhì)得出∠B=∠C,由AAS證明△ACM≌△ABN,得出對應角相等即可.

本題解析:

(1)證明:在△ABD和△ACE中, ,

∴△ABD≌△ACE(SAS),

∴BD=CE;

(2)證明:∵∠1=∠2,

∴∠1+∠DAE=∠2+∠DAE,

即∠BAN=∠CAM,

由(1)得:△ABD≌△ACE,

∴∠B=∠C,

在△ACM和△ABN中, ,

∴△ACM≌△ABN(ASA),

∴∠M=∠N.

點睛:本題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋中裝有紅、白、黃3種顏色的若干個小球,它們除顏色外完全相同.每次從袋中摸出1個球,記下顏色后放回攪勻再摸.摸球?qū)嶒炛,統(tǒng)計得到下表中的數(shù)據(jù):

摸球次數(shù)

10

20

50

100

150

200

250

300

400

500

出現(xiàn)紅球的頻數(shù)

4

9

16

31

44

61

74

92

118

147

出現(xiàn)白球的頻數(shù)

1

4

16

36

52

61

75

85

123

151

由此可以估計摸到黃球的概率約為________(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)前夕,某校為學生購買了A、B兩種品牌的粽子共400個,已知B品牌粽子的單價比A品牌粽子的單價的2倍少6元.

(1)當買A品牌100個,B品牌粽子300個時,學校所花費用為4500元.求A、B兩種品牌粽子各自的單價;

(2)在兩種品牌粽子單價不變的情況下,由于資金臨時出現(xiàn)狀況,所花費用不超過4000元,問至少買A品牌粽子多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(
A.a6÷a2=a3
B.a3a3a3=3a3
C.(a34=a12
D.(a+2b)2=a2+4b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的一塊地,已知AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m,求這塊地的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師對甲、乙兩人的五次數(shù)學測驗成績進行統(tǒng)計,得出兩人五次測驗成績的平均分均為90分,方差分別是S2=51、S2=12,由此可知( 。

A. 甲比乙的成績穩(wěn)定B. 乙比甲的成績穩(wěn)定

C. 甲、乙兩人的成績一樣穩(wěn)定D. 無法確定誰的成績更穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若2x+5y﹣3=0,則4x32y的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知xa+b=6,xb=3,求xa的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正比例函數(shù)ymx經(jīng)過點Pm,9),yx的增大而減小,則m__

查看答案和解析>>

同步練習冊答案