如圖,直線軸、軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)開始在線段AO上以每秒3個(gè)長(zhǎng)度單位的速度向原點(diǎn)O運(yùn)動(dòng). 動(dòng)直線EF從軸開始以每秒1個(gè)長(zhǎng)度單位的速度向上平行移動(dòng)(即EF∥軸),并且分別與軸、線段AB交于E、F點(diǎn).連結(jié)FP,設(shè)動(dòng)點(diǎn)P與動(dòng)直線EF同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t=1秒時(shí),求梯形OPFE的面積;
(2)t為何值時(shí),梯形OPFE的面積最大,最大面積是多少?
(3)設(shè)t的值分別取t1、t2時(shí)(t1≠t2),所對(duì)應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個(gè)三角形是否相似,請(qǐng)證明你的判斷.
(1)18;(2)50;(3)相似

試題分析:(1)先根據(jù)直線的性質(zhì)求出A、B兩點(diǎn)的坐標(biāo),再根據(jù)點(diǎn)A的移動(dòng)規(guī)律,得到AP的長(zhǎng),從而求出OP的長(zhǎng);又因?yàn)镋F=BE,用OB的長(zhǎng)減去OE的長(zhǎng)即可求出EF的長(zhǎng);從而利用梯形面積公式求出梯形OPFE面積;
(2)設(shè)OE=t,AP=3t,利用梯形面積公式,將梯形面積轉(zhuǎn)化為關(guān)于t的二次函數(shù)表達(dá)式,求二次函數(shù)的最大值即可;
(3)作FD⊥x軸于D,則四邊形OEFD為矩形.求出三角形各邊的長(zhǎng)度表達(dá)式,計(jì)算出對(duì)應(yīng)邊的比值,加上一個(gè)夾角相等,即可得到結(jié)果.
設(shè)梯形OPFE的面積為S.
(1) A(20,0),B(0,20)
∴OA=OB=20,∠A=∠B=45°
當(dāng)t=1時(shí),OE=1,AP=3
∴OP=17,EF=BE=19
∴S=(OP+EF)·OE=18;
(2) OE=t,AP=3t
∴OP=20-3t,EF=BE=20-t
∴S=(OP+EF)·OE=(20-3t +20-t)·t=-2t2+20t=-2(t-5)2+50
∴當(dāng)t="5" (在0<t<范圍內(nèi))時(shí),S最大值=50;
(3) 作FD⊥x軸于D,則四邊形OEFD為矩形

∴FD=OE=t,AF=FD=t,又AP=3t
當(dāng)t=t1時(shí),AF1=t1,AP1=3t1
當(dāng)t=t2時(shí),AF2=t2,AP2=3t2
,又∠A=∠A
∴△AF1P1∽△AF2P2.
點(diǎn)評(píng):解答本題的關(guān)鍵是熟記求二次函數(shù)的最大(。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)已知兩直線分別經(jīng)過點(diǎn)A(3,0),點(diǎn)B(-1,0),并且當(dāng)兩直線同時(shí)相交于y負(fù)半軸的點(diǎn)C時(shí),恰好有,經(jīng)過點(diǎn)A、B、C的拋物線的對(duì)稱軸與直線交于點(diǎn)D,如圖所示。

(1)求拋物線的函數(shù)解析式;
(2)當(dāng)直線繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角時(shí),它與拋物線的另一個(gè)交點(diǎn)為P(x,y),求四邊形APCB面積S關(guān)于x的函數(shù)解析式,并求S的最大值;
(3)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)時(shí),它與拋物線的另一個(gè)交點(diǎn)為P,請(qǐng)找出使△PCD為等腰三角形的點(diǎn)P,并求出點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知二次函數(shù)圖象的頂點(diǎn)為原點(diǎn),直線的圖象與該二次函數(shù)的圖象交于A點(diǎn)(8,8),直線與x軸的交點(diǎn)為C,與y軸的交點(diǎn)為B.

(1)求這個(gè)二次函數(shù)的解析式與B點(diǎn)坐標(biāo);
(2)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于D點(diǎn),與x軸交于點(diǎn)E.設(shè)線段PD的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、D、B為頂點(diǎn)的三角形與△BOC相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

銀川市某企業(yè)為某計(jì)算機(jī)產(chǎn)業(yè)基地提供電腦配件.受美元走低的影響,從去年1至9月(前年12月份原材料價(jià)格540元/件),該配件的原材料價(jià)格一路攀升,每件配件的原材料價(jià)格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關(guān)系如下表:
月份x
1
2
3
4
5
6
7
8
9
價(jià)格y1(元/件)
560
580
600
620
640
660
680
700
720
隨著國家調(diào)控措施的出臺(tái),原材料價(jià)格的漲勢(shì)趨緩,10至12月每件配件的原材料價(jià)格y2(元)與月份x(10≤x≤12,且x取整數(shù))之間存在如圖所示的變化趨勢(shì):

(1)請(qǐng)觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢(shì),直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)若去年該配件每件的售價(jià)為1000元,生產(chǎn)每件配件的人力成本為50元,其它成本30元,該配件在1至9月的銷售量p1(萬件)與月份x滿足關(guān)系式p1=0.1x+1.1(1≤x≤9,且x取整數(shù)),10至12月的銷售量p2(萬件)p2=-0.1x+2.9(10≤x≤12,且x取整數(shù)).分別求出去年4月份和10月份每個(gè)月銷售該配件的利潤,并比較那個(gè)月的利潤大;
(3)今年1至5月,每件配件的原材料價(jià)格均比去年12月上漲60元,人力成本比去年增加20%,其它成本沒有變化,該企業(yè)將每件配件的售價(jià)在去年的基礎(chǔ)上提高a%,與此同時(shí)每月銷售量均在去年12月的基礎(chǔ)上減少0.1 a%.這樣,在保證每月上萬件配件銷量的前提下,完成1至5月的總利潤1700萬元的任務(wù),請(qǐng)你參考以下數(shù)據(jù),估算出a的整數(shù)值.(參考數(shù)據(jù):992=9801,982=9604,972=9409,962=9216,952=9025)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,如果拋物線不動(dòng),而把軸、軸分別向上、向右平移3個(gè)單位,那么在新坐標(biāo)系下拋物線的解析式是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)(-1,-2)且圖象經(jīng)過(1,6),求此拋物線解析式.   
(1)求該二次函數(shù)的解析式;
(2)當(dāng)y>0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將拋物線向右平移1個(gè)單位后,得到的拋物線的解析式是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點(diǎn),開口向下的拋物線經(jīng)過點(diǎn)A,B,且其頂點(diǎn)P在⊙C上.

(1)求∠ACB的大。
(2)寫出A,B兩點(diǎn)的坐標(biāo);
(3)試確定此拋物線的解析式;
(4)在該拋物線上是否存在一點(diǎn)D,使線段OP與CD互相平分?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在同一坐標(biāo)系中一次函數(shù)和二次函數(shù)的圖象可能為 (       )

查看答案和解析>>

同步練習(xí)冊(cè)答案