利用“對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角”,畫出下圖中的旋轉(zhuǎn)角,并用量角器量出旋轉(zhuǎn)角的度數(shù).
如圖,
O為旋轉(zhuǎn)中心,A的對應點為A′,
∴圖中的旋轉(zhuǎn)角為∠AOA′.
用量角器量出旋轉(zhuǎn)角的度數(shù)約為45°.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

若一個圖形繞著一個定點旋轉(zhuǎn)一個角α(0°<α≤180°)后能夠與原來的圖形重合,那么這個圖形叫做旋轉(zhuǎn)對稱圖形.例如:等邊三角形繞著它的中心旋轉(zhuǎn)120°(如圖),能夠與原來的等邊三角形重合,因而等邊三角形是旋轉(zhuǎn)對稱圖形.顯然,中心對稱圖形都是旋轉(zhuǎn)對稱圖形,但旋轉(zhuǎn)對稱圖形不一定是中心對稱圖形.下面四個圖形中,旋轉(zhuǎn)對稱圖形個數(shù)有( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在直角坐標系中,△ABC各頂點坐標分別為A(0,
3
)、B(-1,0)、C(1,0),若△DEF各頂點坐標分別為D(
3
,0)、E(0,1)、F(0,-1),則下列判斷正確的是( 。
A.△DEF由△ABC繞O點順時針旋轉(zhuǎn)90°得到
B.△DEF由△ABC繞O點逆時針旋轉(zhuǎn)90°得到
C.△DEF由△ABC繞O點順時針旋轉(zhuǎn)60°得到
D.△DEF由△ABC繞O點順時針旋轉(zhuǎn)120°得到

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,點A的坐標為(
3
,1),將A繞0逆時針旋轉(zhuǎn)120°至OA′,則點A′的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

己知:正方形ABCD.
(1)如圖1,點E、點F分別在邊AB和AD上,且AE=AF.此時,線段BE、DF的數(shù)量關(guān)系和位置關(guān)系分別是什么?請直接寫出結(jié)論.
(2)如圖2,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn)∠α,當0°<α<90°時,連接BE、DF,此時(1)中的結(jié)論是否成立,如果成立,請證明;如果不成立,請說明理由.
(3)如圖3,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn)∠α,當a=90°時,連接BE、DF,猜想溝AE與AD滿足什么數(shù)量關(guān)系時,直線DF垂直平分BE.請直接寫出結(jié)論.
(4)如圖4,等腰直角三角形FAE繞直角頂點A順時針旋轉(zhuǎn)∠α,當90°<α<180°時,連接BD、DE、EF、FB得到四邊形BDEF,則順次連接四邊形BDEF各邊中點所組成的四邊形是什么特殊四邊形?請直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,四邊形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋轉(zhuǎn)后能與△DFA重合.
(1)旋轉(zhuǎn)中心是______;逆時針旋轉(zhuǎn)了______度.
(2)若AE=
3
+
2
,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,把邊長為2的等邊△ABC繞著C點順時針旋轉(zhuǎn)至△DCE的位置,且點B、C、E在同一直線上,則△ABC旋轉(zhuǎn)的角度是______;B、D間的距離為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

請你設計一幅平面圖案滿足以下幾個要求:①由線段或圓組成;②是軸對稱圖形;③是中心對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

分別按下列要求解答:
(1)在圖1中.作出⊙O關(guān)于直線l成軸對稱的圖形;
(2)在圖2中.作出△ABC關(guān)于點P成中心對稱的圖形.

查看答案和解析>>

同步練習冊答案