把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6厘米,DC=7厘米.把三角板DCE繞點C順時針旋轉15°得到△D1CE1,如圖(2),這時AB與CD1相交于點O,與D1E1相交于點F.則AD1=______cm.

解:由題意易知:∠CAB=45°,∠ACD=30°.
若旋轉角度為15°,則∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=6,則AC=BC=3
同理可求得:AO=OC=3.
在Rt△AOD1中,OA=3,OD1=CD1-OC=4,
由勾股定理得:AD1=5.
分析:首先由旋轉的角度為15°,可知∠ACD1=45°.已知∠CAO=45°,即可得AO⊥CD1,然后可在Rt△AOC和Rt△AOD1中,通過解直角三角形求得AD1的長.
點評:此題主要考查了旋轉的性質以及解直角三角形的綜合應用,能夠發(fā)現(xiàn)AO⊥OC是解決此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6cm,DC=7cm把三角板DCE繞點C順時針旋轉15°得到△D1CE1(如圖乙).這時AB與CD1相交于點O,與D1E1相交于點F.
(1)求∠OFE1的度數(shù);
(2)求線段AD1的長;
(3)若把三角形D1CE1繞著點C順時針再旋轉30°得△D2CE2,這精英家教網(wǎng)時點B在△D2CE2的內(nèi)部,外部,還是邊上?證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6厘米,DC=7厘米.把三角板DCE繞點C順時針旋轉15°得到△D1CE1,如圖(2),這時AB與CD1相交于點O,與D1E1相交于點F.則AD1=
 
cm.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=12,CD=14,把三角板DCE繞著點C順時針旋轉15°得到△D1CE1(如圖乙),此時AB與CD1交于點O,則線段AD1的長度為
10
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把一副三角板如圖所示拼在一起,延長ED交AC于F.那么∠AFE的度數(shù)為
105°
105°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把一副三角板如圖所示放置:圖(1)中∠α與∠β的關系是
互余
互余
,圖(2)中∠α與∠β的關系是
互補
互補

查看答案和解析>>

同步練習冊答案