【題目】如圖1,過(guò)點(diǎn)A(0,4)的圓的圓心坐標(biāo)為C(2,0),B是第一象限圓弧上的一點(diǎn),且BC⊥AC,拋物線y= x2+bx+c經(jīng)過(guò)C、B兩點(diǎn),與x軸的另一交點(diǎn)為D.
(1)點(diǎn)B的坐標(biāo)為( , ),拋物線的表達(dá)式為;
(2)如圖2,求證:BD∥AC;
(3)如圖3,點(diǎn)Q為線段BC上一點(diǎn),且AQ=5,直線AQ交⊙C于點(diǎn)P,求AP的長(zhǎng).
【答案】
(1)6;2;y= x2+ x﹣7
(2)
證明:在拋物線表達(dá)式y(tǒng)= x2+ x﹣7中,令y=0,即 x2+ x﹣7=0,
解得x=2或x=7,∴D(7,0).
如答圖2所示,
過(guò)點(diǎn)B作BE⊥x軸于點(diǎn)E,則DE=OD﹣OE=1,CD=OD﹣OC=5.
在Rt△BDE中,由勾股定理得:BD= = = ;
在Rt△BCE中,由勾股定理得:BC= = = .
在△BCD中,BD= ,BC= ,CD=5,
∵BD2+BC2=CD2
∴△BCD為直角三角形,∠CBD=90°,
∴∠CBD=∠ACB=90°,
∴AC∥BD
(3)
解:如答圖3所示:
由(2)知AC=BC= ,又AQ=5,
則在Rt△ACQ中,由勾股定理得:CQ= = = .
過(guò)點(diǎn)C作CF⊥PQ于點(diǎn)F,
∵S△ACQ= ACCQ= AQCF,
∴CF= = =2.
在Rt△ACF中,由勾股定理得:AF= = =4.
由垂徑定理可知,AP=2AF,
∴AP=8.
【解析】(1.)解:如答圖1所示,過(guò)點(diǎn)B作BE⊥x軸于點(diǎn)E.
∵AC⊥BC,
∴∠ACO+∠BCE=90°,
∵∠ACO+∠OAC=90°,∠BCE+∠CBE=90°,
∴∠OAC=∠BCE,∠ACO=∠CBE.
∵在△AOC與△CEB中,
∴△AOC≌△CEB(ASA).
∴CE=OA=4,BE=OC=2,
∴OE=OC+CE=6.
∴B點(diǎn)坐標(biāo)為(6,2).
∵點(diǎn)C(2,0),B(6,2)在拋物線y= x2+bx+c上,
∴ ,
解得b= ,c=﹣7.
∴拋物線的表達(dá)式為:y= x2+ x﹣7.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)坐標(biāo)分別是A(x1 , y1),B(x2 , y2),C(x3 , y3),對(duì)于△ABC的橫長(zhǎng)、縱長(zhǎng)、縱橫比給出如下定義:
將|x1﹣x2|,|x2﹣x3|,|x3﹣x1|中的最大值,稱為△ABC的橫長(zhǎng),記作Dx;將|y1﹣y2|,|y2﹣y3|,|y3﹣y1|中的最大值,稱為△ABC的縱長(zhǎng),記作Dy;將 叫做△ABC的縱橫比,記作λ= .
例如:如圖1,
△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(0,3),B(2,1),C(﹣1,﹣2),則Dx=|2﹣(﹣1)|=3,Dy=|3﹣(﹣2)|=5,
所以λ= = .
(1)如圖2,
點(diǎn)A(1,0),
①點(diǎn)B(2,1),E(﹣1,2),
則△AOB的縱橫比λ1=
△AOE的縱橫比λ2=;
②點(diǎn)F在第四象限,若△AOF的縱橫比為1,寫出一個(gè)符合條件的點(diǎn)F的坐標(biāo);
③點(diǎn)M是雙曲線y= 上一個(gè)動(dòng)點(diǎn),若△AOM的縱橫比為1,求點(diǎn)M的坐標(biāo);
(2)如圖3,
點(diǎn)A(1,0),⊙P以P(0, )為圓心,1為半徑,點(diǎn)N是⊙P上一個(gè)動(dòng)點(diǎn),直接寫出△AON的縱橫比λ的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線BD經(jīng)過(guò)坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù) 的圖象上.若點(diǎn)A的坐標(biāo)為(﹣2,﹣2),則k的值為( )
A.1
B.﹣3
C.4
D.1或﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,“校園手機(jī)”現(xiàn)象已經(jīng)受到社會(huì)廣泛關(guān)注,某數(shù)學(xué)興趣小組對(duì)“是否贊成中學(xué)生帶手機(jī)進(jìn)校園”的問(wèn)題進(jìn)行了社會(huì)調(diào)查.小文將調(diào)查數(shù)據(jù)作出如下不完整的整理: 頻數(shù)分布表
看法 | 頻數(shù) | 頻率 |
贊成 | 5 | |
無(wú)所謂 | 0.1 | |
反對(duì) | 40 | 0.8 |
(1)請(qǐng)求出共調(diào)查了多少人;并把小文整理的圖表補(bǔ)充完整;
(2)小麗要將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計(jì)圖,則扇形圖中“贊成”的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,“校園手機(jī)”現(xiàn)象已經(jīng)受到社會(huì)廣泛關(guān)注,某數(shù)學(xué)興趣小組對(duì)“是否贊成中學(xué)生帶手機(jī)進(jìn)校園”的問(wèn)題進(jìn)行了社會(huì)調(diào)查.小文將調(diào)查數(shù)據(jù)作出如下不完整的整理: 頻數(shù)分布表
看法 | 頻數(shù) | 頻率 |
贊成 | 5 | |
無(wú)所謂 | 0.1 | |
反對(duì) | 40 | 0.8 |
(1)請(qǐng)求出共調(diào)查了多少人;并把小文整理的圖表補(bǔ)充完整;
(2)小麗要將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計(jì)圖,則扇形圖中“贊成”的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,OA=5,AB=4,點(diǎn)D為邊AB上一點(diǎn),將△BCD沿直線CD折疊,使點(diǎn)B恰好落在邊OA上的點(diǎn)E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.
(1)求OE的長(zhǎng)及經(jīng)過(guò)O,D,C三點(diǎn)拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從E點(diǎn)出發(fā),沿EC以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),DP=DQ;
(3)若點(diǎn)N在(1)中拋物線的對(duì)稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)O,B的對(duì)應(yīng)點(diǎn)分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )
A.
B.2 ﹣
C.2 ﹣
D.4 ﹣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com