【題目】已知:O是坐標(biāo)原點(diǎn),Pm,n)(m0)是函數(shù)y=k0)上的點(diǎn),過點(diǎn)P作直線PAOPP,直線PAx軸的正半軸交于點(diǎn)Aa,0)(am).設(shè)OPA的面積為s,且s=1+

1)當(dāng)n=1時(shí),求點(diǎn)A的坐標(biāo);

2)若OP=AP,求k的值;

3)設(shè)n是小于20的整數(shù),且k≠,OP2的最小值.

【答案】(1)A(,0);(22;(35.

【解析】試題分析:1)根據(jù)三角形的面積公式得到 代入就可以得到的值.
2)易證是等腰直角三角形,得到 根據(jù)三角形的面積

就可以解得的值.
3)易證 根據(jù)相似三角形面積的比等于相似比的平方,就可以得到關(guān)于的方程,從而求出的值.得到的值.

試題解析:過點(diǎn)PPQx軸于Q,則PQ=n,OQ=m,

(1)當(dāng)n=1時(shí),

(2)解法一:∵OP=AP,PAOP,

∴△OPA是等腰直角三角形.

k=2.

解法二:∵OP=AP,PAOP,

∴△OPA是等腰直角三角形.

m=n.

設(shè)△OPQ的面積為

則:

即:

k=2.

(3)解法一:∵PAOPPQOA,

∴△OPQ∽△OAP.

設(shè):△OPQ的面積為,

即:

化簡得:

k=2 (舍去),

∴當(dāng)n是小于20的整數(shù)時(shí),k=2.

m>0,k=2,

n是大于0且小于20的整數(shù).

當(dāng)n=1時(shí),

當(dāng)n=2時(shí),

當(dāng)n=3時(shí),

當(dāng)n是大于3且小于20的整數(shù)時(shí),

即當(dāng)n=4、5、6…19時(shí), 的值分別是:

的最小值是5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是矩形外一點(diǎn),,,,連接AEBD于點(diǎn)F、連接CF

求證:四邊形BECO是菱形;

填空:若,則線段CF的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=-2x+4xy軸相交于A,B兩點(diǎn),點(diǎn)C在線段AB上,且∠COA=45°

(1)求點(diǎn)A,B的坐標(biāo);

(2)求△AOC的面積;

(3)直線OC上有一動(dòng)點(diǎn)D,過點(diǎn)D作直線l(不與直線AB重合)x,y軸分別交于點(diǎn)E,F,當(dāng)△OEF與△ABO全等時(shí),求直線EF的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校八年級(jí)的體育老師為了了解本年級(jí)學(xué)生喜歡球類運(yùn)動(dòng)的情況,抽取了該年級(jí)部分學(xué)生對(duì)籃球、足球、排球、乒乓球的愛好情況進(jìn)行了調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖(說明:每位學(xué)生只選一種自己最喜歡的一種球類),請根據(jù)這兩幅圖形解答下列問題:

1)在本次調(diào)查中,體育老師一共調(diào)查了多少名學(xué)生?

2)將兩個(gè)不完整的統(tǒng)計(jì)圖補(bǔ)充完整;

3)求出乒乓球在扇形中所占的圓心角的度數(shù)?

4)已知該校有760名學(xué)生,請你根據(jù)調(diào)查結(jié)果估計(jì)愛好足球和排球的學(xué)生共計(jì)多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點(diǎn),C、Dl2上的兩點(diǎn),某人在點(diǎn)A處測得∠CAB=90°,DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測得∠DEB=60°,求C、D兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,相交于點(diǎn),相交于點(diǎn),,的平分線,的平分線。

1)若,求的大小;

2)若,求的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,RtOAB的頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3),點(diǎn)C的坐標(biāo)為(10),點(diǎn)P為斜邊OB上的一動(dòng)點(diǎn),則PA+PC的最小值_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點(diǎn)A、B,且與經(jīng)過點(diǎn)C(2,0)的一次函數(shù)y=kx+b的圖象相交于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為4,直線CDy軸相交于點(diǎn)E

(1)直線CD的函數(shù)表達(dá)式為______(直接寫出結(jié)果)

(2)x軸上求一點(diǎn)P使△PAD為等腰三角形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

(3)若點(diǎn)Q為線段DE上的一個(gè)動(dòng)點(diǎn),連接BQ.點(diǎn)Q是否存在某個(gè)位置,將△BQD沿著直線BQ翻折,使得點(diǎn)D恰好落在直線AB下方的y軸上?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0b)且a、b滿足+|b6|0,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著OCBAO的線路移動(dòng).

1)點(diǎn)B的坐標(biāo)為   ;當(dāng)點(diǎn)P移動(dòng)3.5秒時(shí),點(diǎn)P的坐標(biāo)為   ;

2)在移動(dòng)過程中,當(dāng)點(diǎn)Px軸的距離為4個(gè)單位長度時(shí),求點(diǎn)P移動(dòng)的時(shí)間;

3)在OCB的線路移動(dòng)過程中,是否存在點(diǎn)P使△OBP的面積是10,若存在求出點(diǎn)P移動(dòng)的時(shí)間;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案