【題目】央視“經(jīng)典詠流傳”開播以來受到社會廣泛關注,我市某校就“中華文化我傳承——地方戲曲進校園”的喜愛情況進行了隨機調查,對收集的信息進行統(tǒng)計,繪制了下面兩副尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖所提供的信息解答下列問題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”
(1)被調查的總人數(shù)是________人,扇形統(tǒng)計圖中C部分所對應的扇形圓心角的度數(shù)為______;
(2)補全條形統(tǒng)計圖;
(3)若該校共有學生1800人,請根據(jù)上述調查結果,估計該校學生中D類有______人;
(4)在抽取的A類5人中,剛好有3個女生2個男生,從中隨機抽取兩個同學擔任兩角色,用樹形圖或列表法求出被抽到的兩個學生性別相同的概率.
【答案】(1)50;216°;(2)見解析;(3)180;(4)
【解析】
(1)由A的人數(shù)除以所占百分比得出被調查的總人數(shù),由360乘以C所占比例即可求得C部分所對應的扇形圓心角的度數(shù);
(2)求出B部分的人數(shù),補全條形統(tǒng)計圖;
(3)由該校總人數(shù)乘以D類所占比例即可得出答案;
(4)由列表法和概率公式即可解答.
(1)5÷10%=50(人),
360×=216,
故答案為:50;216°;
(2)如圖所示,總人數(shù)為50人,所以B的人數(shù)=50-5-30-5=10(人),補全條形統(tǒng)計圖如圖:
(3)1800 ×=180 (人),
故答案為:180;
(4)設3個女生分別為女1,女2,女3,2個男生分別為男1,男2,所有可能出現(xiàn)的結果如下表:
從中隨機抽取兩個同學擔任兩角色,所有可能的結果有20種,每種結果的可能性都相同,其中,抽到性別相同的結果有8種,
所以P(被抽到的兩個學生性別相同)=.
科目:初中數(shù)學 來源: 題型:
【題目】觀察以下等式:
第1個等式:23-22=13+2×1+1;
第2個等式:33-32=23+3×2+22;
第3個等式:43-42=33+4×3+32;
……
按照以上規(guī)律,解決下列問題:
(1)寫出第4個等式:__________________;
(2)寫出你猜想的第n個等式(用含n的等式表示),并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=,∠B=45°,∠C=60°.
(1)求BC邊上的高線長.
(2)點E為線段AB的中點,點F在邊AC上,連結EF,沿EF將△AEF折疊得到△PEF.
①如圖2,當點P落在BC上時,求∠AEP的度數(shù).
②如圖3,連結AP,當PF⊥AC時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是邊長為6的菱形,且∠BAD=120°,點E,F分別在AB、BC邊上,將菱形沿EF折疊,點B正好落在AD邊的點G處,若EG⊥AC,則FG的長為( 。
A.3B.6C.3D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A,D的⊙O分別交AB,AC于點E,F(xiàn),連接OF交AD于點G.
(1)求證:BC是⊙O的切線;
(2)設AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長;
(3)若BE=8,sinB=,求DG的長,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于軸對稱,點P是軸上的一個動點,設點P的坐標為(,0),過點P做軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達式;
(2)點P在線段AB運動過程中,是否存在點Q,使得△BOD∽△QBM?若存在,求出點Q的坐標;若不存在,請說明理由.
(3)已知點F(0,),當點P在軸上運動時,試求為何值時,以D,M,Q,F為頂點的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,為原點,拋物線經(jīng)過點,對稱軸為直線,點關于直線的對稱點為點.過點作直線軸,交軸于點.
(Ⅰ)求該拋物線的解析式及對稱軸;
(Ⅱ)點在軸上,當的值最小時,求點的坐標;
(Ⅲ)拋物線上是否存在點,使得,若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,D為AB邊上的動點,過點D作DE⊥AB交邊AC于點E,過點E作EF⊥DE交BC于點F,連接DF.
(1)當AD=4時,求EF的長度;
(2)求△DEF的面積的最大值;
(3)設O為DF的中點,隨著點D的運動,則點O的運動路徑的長度為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知的圓心為點,拋物線y=ax2﹣x+c過點A,與交于B、C兩點,連接AB、AC,且AB⊥AC,B、C兩點的縱坐標分別是2、1.
(1)求B、C點坐標和拋物線的解析式;
(2)直線y=kx+1經(jīng)過點B,與x軸交于點D.點E(與點D不重合)在該直線上,且AD=AE,請判斷點E是否在此拋物線上,并說明理由;
(3)如果直線y=k1x﹣1與⊙A相切,請直接寫出滿足此條件的直線解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com