【題目】已知:四邊形ABCD是正方形,E是AB邊上一點(diǎn),F(xiàn)是BC延長(zhǎng)線(xiàn)上一點(diǎn),且DE=DF.
(1)如圖1,求證:DF⊥DE;

(2)如圖2,連接AC,EF交于點(diǎn)M,求證:M是EF的中點(diǎn).

【答案】
(1)證明:∵四邊形ABCD是正方形,

∴DA=DC,∠DAE=∠DCB=90°.

∴∠DCF=180°﹣90°=90°.

∴∠DAE=∠DCF.

在Rt△DAE和Rt△DCF中, ,

∴Rt△DAE≌Rt△DCF(HL).

∴∠ADE=∠CDF,

∵∠ADE+∠CDE=90°,

∴∠CDF+∠CDE=90°,

即∠EDF=90°,

∴DF⊥DE.


(2)證明;過(guò)點(diǎn)F作GF⊥CF交AC的延長(zhǎng)線(xiàn)于點(diǎn)G,

則∠GFC=90°.

∵正方形ABCD中,∠B=90°,

∴∠GFC=∠B.

∴AB∥GF.

∴∠BAC=∠G.

∵四邊形ABCD是正方形,

∴AB=BC,

∴∠BAC=∠BCA=45°.

∴∠BAC=∠BCA=∠FCG=∠G=45°.

∴FC=FG.

∵△DAE≌△DCF,

∴AE=CF.

∴AE=FG.

在△AEM和△GFM中, ,

∴△AEM≌△GFM(AAS).

∴ME=MF.

即M是EF的中點(diǎn)


【解析】(1)由正方形的性質(zhì)得出DA=DC,∠DAE=∠DCB=90°.得出∠DAE=∠DCF.由HL證明Rt△DAE≌Rt△DCF,得出∠ADE=∠CDF,證出∠EDF=90°即可;(2)證明;過(guò)點(diǎn)F作GF⊥CF交AC的延長(zhǎng)線(xiàn)于點(diǎn)G,則∠GFC=90°.AB∥GF.得出∠BAC=∠G.由正方形的性質(zhì)證出FC=FG.得出AE=FG.由AAS證明△AEM≌△GFM,得出ME=MF即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,點(diǎn)M為射線(xiàn)AE上任意一點(diǎn)(不與A重合),連接CM,將線(xiàn)段CM繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°得到線(xiàn)段CN,直線(xiàn)NB分別交直線(xiàn)CM、射線(xiàn)AE于點(diǎn)F、D.

(1)直接寫(xiě)出∠NDE的度數(shù).
(2)如圖2、圖3,當(dāng)∠EAC為銳角或鈍角時(shí),其他條件不變,(1)中的結(jié)論是否發(fā)生變化?如果不變,選取其中一種情況加以證明;如果變化,請(qǐng)說(shuō)明理由.

(3)如圖4,若∠EAC=15°,∠ACM=60°,直線(xiàn)CM與AB交于G,BD=,其他條件不變,求線(xiàn)段AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小敏做了一個(gè)角平分儀ABCD,其中AB=AD,BC=DC,將儀器上的點(diǎn)A與∠PRQ的頂點(diǎn)R重合,調(diào)整ABAD,使它們分別落在角的兩邊上,過(guò) 點(diǎn)A,C 畫(huà)一條射線(xiàn)AE,AE就是∠PRQ的平分線(xiàn)。此角平分儀的畫(huà)圖原理是:根據(jù)儀器結(jié)構(gòu),可得△ABC≌△ADC,這樣就有∠QAE=∠PAE。則說(shuō)明這兩個(gè)三角形全等的依據(jù)是(

A. SSS B. SAS C. ASA D. AAS

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、E、F、D四點(diǎn)在同一直線(xiàn)上,CEBF,CE=BF,B=C.(1)ABFDCE全等嗎?請(qǐng)說(shuō)明理由;(2)ABCD平行嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”是由中央電視臺(tái)和國(guó)家語(yǔ)言文學(xué)工作委員會(huì)聯(lián)合主辦的節(jié)目,希望通過(guò)節(jié)目的播出,能吸引更多的人關(guān)注對(duì)漢字文化的學(xué)習(xí),某校開(kāi)展了一次“漢字聽(tīng)寫(xiě)”比賽,每位參賽學(xué)生聽(tīng)寫(xiě)40個(gè)漢字,比賽結(jié)束后隨機(jī)抽取部分學(xué)生的聽(tīng)寫(xiě)結(jié)果,按聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)x繪制成了如圖兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息回答下列問(wèn)題:

(1)本次共隨機(jī)抽取了名學(xué)生的聽(tīng)寫(xiě)結(jié)果,聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)x在范圍的人數(shù)最多;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)在扇形統(tǒng)計(jì)圖中,請(qǐng)計(jì)算31≤x≤41所對(duì)應(yīng)的扇形圓心角的大小;
(4)若該校共有1200名學(xué)生,如果聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)不少于21個(gè)定為良好,請(qǐng)你估計(jì)該校本次“漢字聽(tīng)寫(xiě)”比賽達(dá)到良好的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=1,連接AC,以AC為邊作第一個(gè)正方形ACC1D1 , 連接AC1 , 以AC1為邊作第二個(gè)正方形AC1C2D2 , 則第10個(gè)正方形邊長(zhǎng)為(

A.8
B.16
C.32
D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DBC上一點(diǎn),∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,試求∠DAC、∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周?chē)锨椎姆秶鷥?nèi)形成極端氣候,有極強(qiáng)的破壞力。如圖,有一臺(tái)風(fēng)中心沿東西方向AB由點(diǎn)A行駛向點(diǎn)B,已知點(diǎn) C為一海港,且點(diǎn) C與直線(xiàn) AB上兩點(diǎn)A,B的距離分別為300km和400km,又 AB=500km,以臺(tái)風(fēng)中心為圓心周?chē)?50km以?xún)?nèi)為受影響區(qū)域。

(1)海港C受臺(tái)風(fēng)影響嗎?為什么?

(2)若臺(tái)風(fēng)的速度為20km/h,臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解學(xué)生體質(zhì)情況,從各年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,每個(gè)學(xué)生的測(cè)試成績(jī)按標(biāo)準(zhǔn)對(duì)應(yīng)為優(yōu)秀、良好、及格、不及格四個(gè)等級(jí).統(tǒng)計(jì)員在將測(cè)試數(shù)據(jù)繪制成圖表時(shí)發(fā)現(xiàn),優(yōu)秀漏統(tǒng)計(jì)人,良好漏統(tǒng)計(jì)人,于是及時(shí)更正,從而形成如下圖表.請(qǐng)按正確數(shù)據(jù)解答下列各題:

(1)填寫(xiě)統(tǒng)計(jì)表.

(2)根據(jù)調(diào)整后數(shù)據(jù),補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若該校共有學(xué)生人,請(qǐng)你估算出該校體能測(cè)試等級(jí)為優(yōu)秀的人數(shù).

學(xué)生體能測(cè)試成績(jī)各等次人數(shù)統(tǒng)計(jì)表

體能等級(jí)

調(diào)整前人數(shù)

調(diào)整后人數(shù)

優(yōu)秀



良好



及格



不及格



合計(jì)



學(xué)生體能測(cè)試成績(jī)各等次人數(shù)統(tǒng)計(jì)圖

查看答案和解析>>

同步練習(xí)冊(cè)答案