當(dāng)x=________時(shí),的值相等.

答案:7
提示:

提示:依題意,解該分式方程即可.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:中華題王 數(shù)學(xué) 九年級上 (北師大版) 北師大版 題型:044

已知關(guān)于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2

(1)求k的取值范圍.

(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相

反數(shù)?如果存在,求出k的值;如果不存在,請說明理由.

解:(1)根據(jù)題意,得

△=(2k-3)2-4(k-1)(k+1)

=4k2-12k+9-4k2+4

=-12k+13>0

∴k<

∴k<時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.

(2)存在.如果方程的兩個(gè)實(shí)數(shù)根互為相反數(shù),則

x1+x2=0

解得k=.檢驗(yàn)知,k==0的解.

所以,當(dāng)k=時(shí),方程的兩個(gè)實(shí)數(shù)根x1與x2互為相反數(shù).

當(dāng)你讀了上面的解答過程后,請判斷是否有錯(cuò)誤?如果有,請指出錯(cuò)誤之處,并直接寫出正確的答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:活學(xué)巧練  九年級數(shù)學(xué)  下 題型:044

如圖,在△ABC中,∠C=,∠A=,O為AB上一點(diǎn),BO=m,⊙O的半徑為

(1)當(dāng)m為何值時(shí),直線BC與⊙O相切?

(2)當(dāng)m在什么范圍內(nèi)取值時(shí),直線BC與⊙O相離?相交?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課程 新理念 新思維·訓(xùn)練編·數(shù)學(xué) 九年級下冊(蘇教版) 蘇教版 題型:059

在平面直角坐標(biāo)系xOy中,已知直線l1經(jīng)過點(diǎn)A(-2,0)和點(diǎn)B(0,),直線l2的函數(shù)表達(dá)式為=-x+l1l2相交于點(diǎn)P.⊙C是一個(gè)動(dòng)圓,圓心C在直線l1上運(yùn)動(dòng),設(shè)圓心C的橫坐標(biāo)是a.過點(diǎn)C作CM⊥x軸,垂足是點(diǎn)M.

(1)填空:直線l1的函數(shù)表達(dá)式是________,交點(diǎn)P的坐標(biāo)是________,∠FPB的度數(shù)是________;

(2)當(dāng)⊙C和直線l2相切時(shí),請證明點(diǎn)P到直線CM的距離等于⊙C的半徑R,并寫出R=-2時(shí)a的值.

(3)當(dāng)⊙C和直線l2不相離時(shí),已知⊙C的半徑R=-2,記四邊形NMOB的面積為S(其中點(diǎn)N是直線CM與l2的交點(diǎn)).S是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市育才中學(xué)九年級上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:拋物線y1=-2x2+2與直線y2=2x+2相交
點(diǎn)A和點(diǎn)B,

(1)求出點(diǎn)A和點(diǎn)B的坐標(biāo)。
(2)觀察圖象,請直接寫出y1>y2的自變量x的取值范圍。
(3)當(dāng)x任取一值時(shí),x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,
取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.(例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.) 求:使得M=1的x值。=】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,AB=5,BC=10,FAD的中點(diǎn),CEABE,設(shè)∠ABCα(60°≤α<90°).

(1)當(dāng)α=60°時(shí),求CE的長;

(2)當(dāng)60°<α<90°時(shí),

①是否存在正整數(shù)k,使得∠EFDkAEF?若存在,求出k的值;若不存在,請說明理由.

②連接CF,當(dāng)CE2CF2取最大值時(shí),求tan∠DCF的值.

分析 (1)利用60°角的正弦值列式計(jì)算即可得解;

(2)①連接CF并延長交BA的延長線于點(diǎn)G,利用“角邊角”證明△AFG和△CFD全等,根據(jù)全等三角形對應(yīng)邊相等可得CFGFAGCD,再利用直角三角形斜邊上的中線等于斜邊的一半可得EFGF,再根據(jù)AB、BC的長度可得AGAF,然后利用等邊對等角的性質(zhì)可得∠AEF=∠G=∠AFG根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,從而得解;

②設(shè)BEx,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的長度,在Rt△CEG中,利用勾股定理表示出CG2,從而得到CF2,然后相減并整理,再根據(jù)二次函數(shù)的最值問題解答.

查看答案和解析>>

同步練習(xí)冊答案