【題目】隨著經(jīng)濟快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注校為了了解節(jié)能減排、垃圾分類等知 識的普及情況,隨機調(diào)查了部分學生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類, 并將結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

1)本次調(diào)查的學生共有 人;

2)將條形統(tǒng)計圖補充完整;

3)“非常了解”的人中有,兩名男生,,兩名女生,若從中隨機抽取兩人去參加環(huán)保 知識競賽,請用畫樹狀圖或列表的方法,求恰好抽到名男生的概率.

【答案】150。2)見解析 (3)所以恰好抽到2名男生的概率為

【解析】

1)由非常了解的學生人數(shù)及其所占百分比可得總?cè)藬?shù),用總?cè)藬?shù)乘以樣本中不了解所對應的百分比可得答案;

2)用被調(diào)查人數(shù)乘以對應的百分比求出不了解人數(shù),從而補全圖形;

3)分別用樹狀圖和列表兩種方法表示出所有等可能結(jié)果,從中找到恰好抽到2名男生的結(jié)果數(shù),利用概率公式計算可得.

解:(1)本次調(diào)查的學生總?cè)藬?shù)為4÷8%=50(人),

故答案為:50

2)“不了解”的人數(shù)是50×30%=15(人),

補全圖形如下:

3)列表如下:

畫樹狀圖如下:

              開始

由表或樹狀圖可知共有12種可能的結(jié)果,恰好抽到2名男生的結(jié)果有2個, 所以恰好抽到2名男生的概率為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD的邊長為8,點E、F分別在AD、CD上,AEDF2,BEAF相交于點G,點HBF的中點,連接GH,則GH的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是8m,寬是2m,拋物線的最高點到路面的距離為6米.

(1)按如圖所示建立平面直角坐標系,求表示該拋物線的函數(shù)表達式;
(2)一輛貨運卡車高為4m,寬為2m,如果該隧道內(nèi)設雙向車道,那么這輛貨車能否安全通過?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=8,點D是邊BC上一動點(不與B,C重合),E是AC上一個動點,始終保持∠ADE=∠B,則當△DCE為直角三角形時,BD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB=10,點P在線段AB上,在AB的同側(cè)分別以AP,BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,點P是三角形內(nèi)的任意一點,PDABPEBC,PFAC,若ABC的周長為12,則PD+PE+PF=(

A.8B.6C.4D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 CB 和射線 OACB//OA,點 B 在點 C 的右側(cè).且滿足∠OCB=∠OAB100°,連接線段 OB,點 E、F 在直線 CB 上,且滿足∠FOB=∠AOB,OE平分∠COF.

(1)求∠BOE

(2)當點 EF 在線段 CB 上時(如圖 1),∠OEC 與∠OBA 的和是否是定值?若是,求出這個值;若不是,說明理由。

(3)如果平行移動 AB,點 EF 在直線 CB 上的位置也隨之發(fā)生變化.當點 E、F 在點 C 左側(cè)時,∠OEC 和∠OBA 之間的數(shù)量關(guān)系是否發(fā)生變化?若不變,說明理由;若變化,求出他們之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某生物興趣小組在四天的試驗研究中發(fā)現(xiàn):駱駝的體溫會隨外部環(huán)境溫度的變化而變化,而且在這四天中每晝夜的體溫變化情況相同.他們將一頭駱駝前兩晝夜的體溫變化情況繪制成如圖所示的圖象,請根據(jù)圖象完成下列問題:

(1)第一天中,在什么時間范圍內(nèi)這頭駱駝的體溫是上升的?它的體溫從最低上升到最高需要多長時間?

(2)第三天12時這頭駱駝的體溫是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,已知AB=2,C,D是⊙O的上的兩點,且 + = ,M是AB上一點,則MC+MD的最小值是

查看答案和解析>>

同步練習冊答案