19.如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F,
(1)求∠F的度數(shù);
(2)若CD=5,求DF的長(zhǎng).

分析 (1)根據(jù)平行線的性質(zhì)可得∠EDC=∠B=60°,根據(jù)三角形內(nèi)角和定理即可求解;
(2)易證△EDC是等邊三角形,再根據(jù)直角三角形的性質(zhì)即可求解.

解答 解:(1)∵△ABC是等邊三角形,
∴∠B=60°,
∵DE∥AB,
∴∠EDC=∠B=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°-∠EDC=30°;
(2)∵∠ACB=60°,∠EDC=60°,
∴△EDC是等邊三角形.
∴ED=DC=5,
∵∠DEF=90°,∠F=30°,
∴DF=2DE=10.

點(diǎn)評(píng) 本題考查了等邊三角形的判定與性質(zhì),以及直角三角形的性質(zhì),30度的銳角所對(duì)的直角邊等于斜邊的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,兩圓相交于點(diǎn)P、Q,大圓的割線AD交小圓于點(diǎn)B、C,求證:∠APB+∠CQD=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.解方程:
(1)2(x-1)+1=0
(2)4(2x-1)-3(5x+1)=14
(3)x-$\frac{x+1}{2}$=1-$\frac{x-7}{6}$
(4)$\frac{x-1}{4}$-$\frac{3x-1}{2}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.解方程
(1)(x-5)2=36;   
(2)x2-3x-4=0;
(3)x2-4x+4=0; 
(4)x2+x+3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知拋物線y=ax2+bx+3(a≠0)交x軸于A(1,0)和B (-3,0),交y軸于C.
(1)求拋物線的解析式;
(2)D是拋物線的頂點(diǎn),P為拋物線上的一點(diǎn)(不與D重合),當(dāng)S△PAB=S△ABD時(shí),求P的坐標(biāo);
(3)若F是x軸上一動(dòng)點(diǎn),Q是拋物線上一動(dòng)點(diǎn),是否存在F、Q,使以B、C、F、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.解方程:
(1)$\frac{7-5y}{6}$=1-$\frac{3y-1}{4}$.
(2)$\frac{x}{0.7}$-$\frac{0.17-0.2x}{0.03}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分別是AC、AB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<4)s.解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),以點(diǎn)E、P、Q為頂點(diǎn)的三角形與△ADE相似?
(2)當(dāng)t為何值時(shí),△EPQ為等腰三角形?(直接寫(xiě)出答案即可);
(3)當(dāng)點(diǎn)Q在B、E之間運(yùn)動(dòng)時(shí),是否存在某一時(shí)刻t,使得PQ分四邊形BCDE所成的兩部分的面積之比為S△PQE~S五邊形PQBCD=1:29?若存在,求出此時(shí)t的值以及點(diǎn)E到PQ的距離h;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.計(jì)算x-y-(x+y)的結(jié)果是( 。
A.2x-2yB.-2yC.-2xD.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.解方程:
(1)3x=10-3x   
(2)2(1-x)=x+1
(3)$\frac{x+1}{2}$-1=$\frac{x-3}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案