【題目】如圖,△ABC中,∠C=90°,點(diǎn)D為AC上一點(diǎn),∠ABD=2∠BAC=45°,若AD=12,則△ABD的面積為____.
【答案】36.
【解析】
作DE⊥DB交AB于E,EF垂直AC于F,則∠DEB=90°-∠ABD=45°,證出AE=DE=DB,通過證明△AEF≌△BCD,得出BC==AF=AD=6,由三角形面積公式即可得出答案.
作DE⊥DB交AB于E,EF垂直AC于F,如圖所示:
則∠DEB=90°-∠ABD=45°,
∴△BDE是等腰直角三角形,
∴DB=DE,
∵∠ABD=2∠BAC=45°,
∴∠BAC=22.5°,
∴∠ADE=∠DEB-∠BAC=22.5°=∠BAC,
∴AE=DE=DB,
∵∠AFE=90°,
∴F是AD中點(diǎn),AF=FD,
又∵∠C=90°,
∴∠CBD=90°-45°-22.5°=22.5°,
在Rt△AEF和Rt△BCD中
∴Rt△AEF≌Rt△BCD(AAS),
∴AF=BC=AD=6,
∴△ABD的面積S=AD×BC=×12×6=36;
故答案為:36.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】梧州市特產(chǎn)批發(fā)市場有龜苓膏粉批發(fā),其中A品牌的批發(fā)價(jià)是每包20元,B品牌的批發(fā)價(jià)是每包25元,小王需購買A,B兩種品牌的龜苓膏粉共1000包.
(1)若小王按需購買A,B兩種品牌龜苓膏粉共用22000元,則各購買多少包?
(2)憑會(huì)員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購買會(huì)員卡并用此卡按需購買1000包龜苓膏粉,共用了y元,設(shè)A品牌買了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式;
(3)在(2)中,小王共用了20000元,他計(jì)劃在網(wǎng)店包郵銷售這批龜苓膏粉,每包龜苓膏粉小王需支付郵費(fèi)8元,若每包銷售價(jià)格A品牌比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的龜苓膏粉每包定價(jià)不低于多少元時(shí)才不虧本?(運(yùn)算結(jié)果取整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為正方形的中心,分別延長OA、OD到點(diǎn),使OF=2OA,OE,連接EF,將繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)角得到,連接(如圖2).
(1)探究與的數(shù)量關(guān)系,并給予證明;
(2)當(dāng)時(shí),求證:為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張三角形紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCED的內(nèi)部時(shí),∠A、∠1、∠2之間的關(guān)系是( )
A. ∠A=∠1+∠2 B. 2∠A=∠1+∠2
C. 3∠A=∠1+∠2 D. 4∠A=∠1+∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠B=∠C=40°.點(diǎn)D在線段BC上運(yùn)動(dòng)(點(diǎn)D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當(dāng)∠BAD=20°時(shí),∠EDC= °;
(2)當(dāng)DC等于多少時(shí),△ABD≌△DCE?試說明理由;
(3)△ADE能成為等腰三角形嗎?若能,請(qǐng)直接寫出此時(shí)∠BAD的度數(shù);若不能,請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠C=90°,點(diǎn)D為AB的中點(diǎn),已知扇形EAD和扇形FBD的圓心分別為點(diǎn)A、點(diǎn)B,且AB=4,則圖中陰影部分的面積為_____(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗(yàn)田,要使試驗(yàn)田的面積是570平方米,問道路應(yīng)該多寬?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸、軸分別交于點(diǎn),以為邊在第一象限內(nèi)作長方形.
(1)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 .
(2)如圖,將△ABC對(duì)折,使得點(diǎn)與點(diǎn)重合,折痕交于點(diǎn)交于點(diǎn),求點(diǎn)的坐標(biāo);
(3)在第一象限內(nèi),是否存在點(diǎn)(點(diǎn)除外),使得與全等?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com