【題目】如圖,正方形ABCD的邊長為2,點E,F分別在邊AD,CD上,若∠EBF=45°,則△EDF的周長等于( 。
A.2B.3C.4D.4
【答案】C
【解析】
根據(jù)正方形的性質(zhì)得AB=BC,∠BAE=∠C=90°,根據(jù)旋轉(zhuǎn)的定義,把把△ABE繞點B順時針旋轉(zhuǎn)90°可得到△BCG,根據(jù)旋轉(zhuǎn)的性質(zhì)得BG=BE,CG=AE,∠GBE=90°,∠BAE=∠C=90°,∠EBG=∠ABC=90°,于是可判斷點G在CB的延長線上,接著利用“SAS”證明△FBG≌△EBF,得到EF=CF+AE,然后利用三角形周長的定義得到答案.
解:∵四邊形ABCD為正方形,
∴AB=BC,∠BAE=∠C=90°,
∴把△ABE繞點B順時針旋轉(zhuǎn)90°可得到△BCG,如圖,
∴BG=BE,CG=AE,∠GBE=90°,∠BAE=∠C=90°,
∴點G在DC的延長線上,
∵∠EBF=45°,
∴∠FBG=∠EBG﹣∠EBF=45°,
∴∠FBG=∠FBE,
在△FBG和△EBF中,
BF=BF,∠FBG=∠FBE,BG=BE
∴△FBG≌△FBE(SAS),
∴FG=EF,
而FG=FC+CG=CF+AE,
∴EF=CF+AE,
∴△DEF的周長=DF+DE+CF+AE=CD+AD=2+2=4
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=ax+b(a≠0)與雙曲線(k≠0)交于一、三象限內(nèi)的A,B兩點與x軸交于點C,點A的坐標為(2,m),點B的坐標為(1,n),cos∠AOC=.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)點Q為y軸上一點,△ABQ是以AB為直角邊的直角三角形,求點Q的坐標;
(3)點P(s,t)(s>2)在直線AB上運動,PM∥x軸交雙曲線于M,PN∥y軸交雙曲線于N,直線MN分別交x軸,y軸于E,D,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC為50米,在乙樓頂部A點測得甲樓頂部D點的仰角為37°,在乙樓底部B點測得甲樓頂部D點的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于點A(﹣1,0),E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為D,求四邊形AEDB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=8,AC=6.點D在邊AB上,AD=4.5.△ABC的角平分線AE交CD于點F.
(1)求證:△ACD∽△ABC;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于x軸對稱的△A2B2C2三個頂點A2、B2、C2的坐標;
(3)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是矩形ABCD的邊CD上一點,把△ADE沿AE對折,使點D恰好落在BC邊上的F點處.已知折痕AE=10,且CE:CF=4:3,那么該矩形的周長為( )
A.48B.64C.92D.96
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com