【題目】已知下列命題:
①若a>b,則c﹣a<c﹣b;
②若a>0,則=a;
③對角線互相平分且相等的四邊形是菱形;
④如果兩條弧相等,那么它們所對的圓心角相等.
其中原命題與逆命題均為真命題的個數(shù)是( 。
A. 4個 B. 3個 C. 2個 D. 1個
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C.
(1)求證:AB//MN.
(2)若∠C=40°,∠MND=100°,求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在探究平行線的判定——基本事實:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行時,老師布置了這樣的任務:
請同學們分組在學案上(如圖),用直尺和三角尺畫出過點P與直線AB平行的直線PQ;并思考直尺和三角尺在畫圖過程中所起的作用.
小菲和小明所在的小組是這樣做的:他們選取直尺和含有45°角的三角尺,用平移三角尺的畫圖方法畫出AB的平行線PQ,并將實際畫圖過程抽象出平面幾何圖形(如圖).
以下是小菲和小明所在小組關于直尺和三角尺作用的討論:
①在畫平行線的過程中,三角尺由初始位置靠著直尺平移到終止位置,實際上就是先畫∠BMD=45°,再過點P畫∠BMD=45°
②由初始位置的三角尺和終止位置的三角尺各邊所在直線構成一個“三線八角圖”,其中QP為截線
③初始位置的三角尺和終止位置的三角尺在“三線八角圖”中構成一組同位角
④在畫圖過程中,直尺可以由直線CD代替
⑤在“三線八角圖”中,因為AB和CD是截線,所以,可以下結論“兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行”
其中,正確的是( )
A.①②⑤B.①③④C.②④⑤D.③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南江縣在“創(chuàng)國家級衛(wèi)生城市”中,朝陽社區(qū)計劃對某區(qū)域進行綠化,經(jīng)投標,由甲、乙兩個工程隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.求甲、乙兩工程隊每天能完成綠化的面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=2x+3與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點B,過點B作BC⊥x軸于點C,且C點的坐標為(1,0).
(1)求反比例函數(shù)的解析式;
(2)點D(a,1)是反比例函數(shù)y=(x>0)圖象上的點,在x軸上是否存在點P,使得PB+PD最小?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2013年四川攀枝花12分)如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(1.0),C(0,﹣3).
(1)求拋物線的解析式;
(2)若點P為第三象限內(nèi)拋物線上的一點,設△PAC的面積為S,求S的最大值并求出此時點P的坐標;
(3)設拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學舉行“中國夢校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;
(3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com