【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B1cm/s的速度移動,點Q從點B開始沿BC邊向點C2cm/s的速度移動.如果PQ分別從A,B同時出發(fā).

(1)幾秒后,△PBQ的面積等于6cm2?

(2)幾秒后,四邊形APQC的面積最小?最小值是多少?

【答案】1)經(jīng)過2秒或3秒鐘,的面積等于22.5秒后,四邊形APQC的面積最小,最小值是.

【解析】

1)用t表示、,根據(jù)面積公式列出關(guān)于t的方程并解出,再結(jié)合實際情況進行檢驗;

2)根據(jù)四邊形APQC的面積等于△ABC面積減去△PBQ的面積,建立二次函數(shù)模型,在范圍內(nèi)求最小值即可.

解:(1)設(shè)經(jīng)過t秒鐘,的面積等于,則,
根據(jù)題意得:,
整理得:,
解得:,
,

,
,

答:經(jīng)過2秒或3秒鐘,的面積等于6

2)設(shè)四邊形APQC的面積為y,則,

,

∵拋物線對稱軸為直線,開口向上,

∴當時,圖象先降后升,

∴當時,y最小,

答:2.5秒后,四邊形APQC的面積最小,最小值是.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,D是邊BC的中點,EAB邊上一點,且ADCEO,ADACCE

1)求證:∠B45°;

2)求的值;

3)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)x0)的圖象交于點B(﹣2,n),過點BBCx軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.

(1)求m的值;

(2)若DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店以固定進價一次性購進一種商品,3月份按一定售價銷售,銷售額為2400元,為擴大銷量,減少庫存,4月份在3月份售價基礎(chǔ)上打9折銷售,結(jié)果銷售量增加30件,銷售額增加840元.

(1)求該商店3月份這種商品的售價是多少元?

(2)如果該商店3月份銷售這種商品的利潤為900元,那么該商店4月份銷售這種商品的利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市擬于中秋節(jié)前天里銷售某品牌月餅,其進價為/.設(shè)第天的銷售價格為(元/),銷售量為.該超市根據(jù)以往的銷售經(jīng)驗得出以下的銷售規(guī)律:①當時,;當時,滿足一次函數(shù)關(guān)系,且當時,;時,.②的關(guān)系為

1)當時,的關(guān)系式為   ;

2為多少時,當天的銷售利潤(元)最大?最大利潤為多少?

3)若超市希望第天到第天的日銷售利潤(元)隨的增大而增大,則需要在當天銷售價格的基礎(chǔ)上漲/,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是

A.袋中有形狀、大小、質(zhì)地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球

B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨

C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎

D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】臺州人民翹首以盼的樂清灣大橋于2018928日正式通車,經(jīng)統(tǒng)計分析,大橋上的車流速度(千米/小時)是車流密度(輛/千米)的函數(shù),當橋上的車流密度達到220/千米的時候就造成交通堵塞,此時車流速度為0千米/小時;當車流密度不超過20/千米,車流速度為80千米/小時,研究證明:當時,車流速度是車流密度的一次函數(shù).

1)求大橋上車流密度為50/輛千米時的車流速度;

2)在某一交通高峰時段,為使大橋上的車流速度大于60千米/小時且小于80千米/小時,應(yīng)把大橋上的車流密度控制在什么范圍內(nèi)?

3)車流量(輛/小時)是單位時間內(nèi)通過橋上某觀測點的車輛數(shù),即:車流量車流速度車流密度,求大橋上車流量的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點DAC邊上一點,連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若數(shù)a使關(guān)于x的不等式組至少有3個整數(shù)解,且使關(guān)于y的分式方程2有非負整數(shù)解,則滿足條件的所有整數(shù)a的和是(  )

A. 14B. 15C. 23D. 24

查看答案和解析>>

同步練習冊答案