某企業(yè)為打入國(guó)際市場(chǎng),決定從A、B兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)美元)
項(xiàng)目
類(lèi)別
年固定
成本
每件產(chǎn)品
成本
每件產(chǎn)品
銷(xiāo)售價(jià)
每年最多可
生產(chǎn)的件數(shù)
A產(chǎn)品20m10200
B產(chǎn)品40818120
其中年固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),m為待定常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料價(jià)格決定,預(yù)計(jì)6≤m≤8.另外,年銷(xiāo)售x件B產(chǎn)品時(shí)需上交0.05x2萬(wàn)美元的特別關(guān)稅.假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷(xiāo)售出去.
(1)寫(xiě)出該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤(rùn)y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系并指明其自變量取值范圍;
(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)你做出規(guī)劃.
(1)由年銷(xiāo)售量為x件,按利潤(rùn)的計(jì)算公式,有生產(chǎn)A、B兩產(chǎn)品的年利潤(rùn)y1,y2分別為:
y1=10x-(20+mx)=(10-m)x-20,(0≤x≤200),
y2=18x-(40+8x)-0.05x2=-0.05x2+10x-40,(0≤x≤120);

(2)∵6≤m≤8,∴10-m>0,∴y1=(10-m)x-20,為增函數(shù),
又∵0≤x≤200,∴當(dāng)x=200時(shí),生產(chǎn)A產(chǎn)品有最大利潤(rùn)為(10-m)×200-20=1980-200m(萬(wàn)美元)
又∵y2=-0.05x2+10x-40=-0.05(x-100)2+460,(0≤x≤120)
∴當(dāng)x=100時(shí),生產(chǎn)B產(chǎn)品有最大利潤(rùn)為460(萬(wàn)美元)
現(xiàn)在我們研究生產(chǎn)哪種產(chǎn)品年利潤(rùn)最大,為此,我們作差比較:
∵生產(chǎn)A產(chǎn)品最大利潤(rùn)為1980-200m(萬(wàn)美元),生產(chǎn)B產(chǎn)品最大利潤(rùn)為460(萬(wàn)美元),
∴(1980-200m)-460=1520-200m,且6≤m≤8,
當(dāng)1520-200m>0時(shí),6≤m<7.6,
當(dāng)1520-200m=0時(shí),m=7.6,
當(dāng)1520-200m<0時(shí),7.6<m≤8,
所以:當(dāng)6≤m<7.6時(shí),投資生產(chǎn)A產(chǎn)品200件可獲得最大年利潤(rùn);
當(dāng)m=7.6時(shí),生產(chǎn)A產(chǎn)品與生產(chǎn)B產(chǎn)品均可獲得最大年利潤(rùn);
當(dāng)7.6<m≤8時(shí),投資生產(chǎn)B產(chǎn)品100件可獲得最大年利潤(rùn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖已知拋物線(xiàn)y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).設(shè)拋物線(xiàn)的頂點(diǎn)為D,求解下列問(wèn)題:
(1)求拋物線(xiàn)的解析式和D點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)D作DFy軸,交直線(xiàn)BC于點(diǎn)F,求線(xiàn)段DF的長(zhǎng),并求△BCD的面積;
(3)能否在拋物線(xiàn)上找到一點(diǎn)Q,使△BDQ為直角三角形?若能找到,試寫(xiě)出Q點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y=-x2+2mx+m+2的圖象與x軸交于A(-1,0),B兩點(diǎn),在x軸上方且平行于x軸的直線(xiàn)EF與拋物線(xiàn)交于E,F(xiàn)兩點(diǎn),E在F的左側(cè),過(guò)E,F(xiàn)分別作x軸的垂線(xiàn),垂足是M,N.
(1)求m的值及拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)設(shè)BN=t,矩形EMNF的周長(zhǎng)為C,求C與t的函數(shù)表達(dá)式;
(3)當(dāng)矩形EMNF的周長(zhǎng)為10時(shí),將△ENM沿EN翻折,點(diǎn)M落在坐標(biāo)平面內(nèi)的點(diǎn)記為M',試判斷點(diǎn)M'是否在拋物線(xiàn)上?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知△OAB的頂點(diǎn)A(-6,0),B(0,2),O是坐標(biāo)原點(diǎn),將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC.
(1)寫(xiě)出C,D兩點(diǎn)的坐標(biāo);
(2)求過(guò)A,D,C三點(diǎn)的拋物線(xiàn)的解析式,并求此拋物線(xiàn)頂點(diǎn)E的坐標(biāo);
(3)證明AB⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線(xiàn)y=2x+2交y軸于點(diǎn)A,交x軸于點(diǎn)B,直線(xiàn)l:y=-3x+9
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的函數(shù)關(guān)系式,并指出此函數(shù)的函數(shù)值隨x的增大而增大時(shí),x的取值范圍;
(2)若點(diǎn)E在(1)中的拋物線(xiàn)上,且四邊形ABCE是以BC為底的梯形,求梯形ABCE的面積;
(3)在(1)、(2)的條件下,過(guò)E作直線(xiàn)EF⊥x軸,垂足為G,交直線(xiàn)l于F.在拋物線(xiàn)上是否存在點(diǎn)H,使直線(xiàn)l、FH和x軸所圍成的三角形的面積恰好是梯形ABCE面積的
1
2
?若存在,求點(diǎn)H的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,隧道的截面由拋物線(xiàn)AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線(xiàn)為x軸,線(xiàn)段BC的中垂線(xiàn)為y軸,建立平面直角坐標(biāo)系,y軸是拋物線(xiàn)的對(duì)稱(chēng)軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線(xiàn)的解析式;
(2)一輛貨運(yùn)卡車(chē)高4.5m,寬2.4m,它能通過(guò)該隧道嗎?
(3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見(jiàn),在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運(yùn)卡車(chē)還能通過(guò)隧道嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將△AOB置于平面直角坐標(biāo)系中,其中點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),∠ABO=60度.
(1)若△AOB的外接圓與y軸交于點(diǎn)D,求D點(diǎn)坐標(biāo).
(2)若點(diǎn)C的坐標(biāo)為(-1,0),試猜想過(guò)D,C的直線(xiàn)與△AOB的外接圓的位置關(guān)系,并加以說(shuō)明.
(3)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)O和A且頂點(diǎn)在圓上,求此函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某大眾汽車(chē)經(jīng)銷(xiāo)商在銷(xiāo)售某款汽車(chē)時(shí),以高出進(jìn)價(jià)20%標(biāo)價(jià).已知按標(biāo)價(jià)的九折銷(xiāo)售這款汽車(chē)9輛與將標(biāo)價(jià)直降0.2萬(wàn)元銷(xiāo)售4輛獲利相同.
(1)求該款汽車(chē)的進(jìn)價(jià)和標(biāo)價(jià)分別是多少萬(wàn)元?
(2)若該款汽車(chē)的進(jìn)價(jià)不變,按(1)中所求的標(biāo)價(jià)出售,該店平均每月可售出這款汽車(chē)20輛;若每輛汽車(chē)每降價(jià)0.1萬(wàn)元,則每月可多售出2輛.求該款汽車(chē)降價(jià)多少萬(wàn)元出售每月獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一次函數(shù)y=-
1
2
x+2
分別交y軸、x軸于A、B兩點(diǎn),拋物線(xiàn)y=-x2+bx+c過(guò)A、B兩點(diǎn).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)作垂直x軸的直線(xiàn)x=t,在第一象限交直線(xiàn)AB于M,交這個(gè)拋物線(xiàn)于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案