【題目】如圖,在ABCD中,點E、F分別在邊AB和CD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是( )
A. AE=CF B. DE=BF C. ∠ADE=∠CBF D. ∠AED=∠CFB
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,為坐標原點,點的坐標為,點的坐標為,且滿足.
(1)若,判斷點處于第幾象限,給出你的結論并說明理由;
(2)若為最小正整數,軸上是否存在一點,使三角形的面積等于10,若存在,求點的坐標;若不存在,請說明理由.
(3)點為坐標系內一點,連接,若,且,直接寫出點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)計算:0×1×2×3+1=(_______)2;
1×2×3×4+1=(______)2;
2×3×4×5+1=(_______)2;
3×4×5×6+1=(_______)2;
……
(2)根據以上規(guī)律填空:4×5×6×7+1=(_____)2;
____×___×_____×_____+1=(55)2.
(3)小明說:“任意四個連續(xù)自然數的積與1的和都是某個奇數的平方”.你認為他的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6Cm,點P從A開始沿AB邊向B以每秒3cm的速度移動,點Q從C開始沿CD邊向D以每秒1cm的速度移動,如果點P、Q分別從A、C同時出發(fā),當其中一點到達終點時,運動停止,設運動時間為秒.
(1)求證:當時,四邊形APQD是平行四邊形;
(2)PQ是否可能平分對角線BD?若能,求出當為何值時PQ平分BD;若不能,請說明理由;
(3)當PD=PQ時,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為迎接體育中考,了解學生的體育情況,學校隨機調查了本校九年級50名學生“30秒跳繩”的次數,并將調查所得的數據整理如下:
30秒跳繩次數的頻數、頻率分布表
成績段 | 頻數 | 頻率 |
0≤x<20 | 5 | 0.1 |
20≤x<40 | 10 | a |
40≤x<60 | b | 0.14 |
60≤x<80 | m | c |
80≤x<100 | 12 | n |
根據以上圖表信息,解答下列問題:
(1)表中的a= , m=;
(2)請把頻數分布直方圖補充完整;(畫圖后請標注相應的數據)
(3)若該校九年級共有600名學生,請你估計“30秒跳繩”的次數60次以上(含60次)的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司對一批某品牌襯衣的質量抽檢結果如下表.
(1)從這批襯衣眾人抽1件是次品的概率約為多少?
(2)如果銷售這批襯衣600件,那么至少要再準備多少件正品襯衣供買到次品的顧客更換?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQ、AQ、CP.設點P、Q運動的時間為ts.
當t為何值時,四邊形ABQP是矩形;
當t為何值時,四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長和面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線y=kx﹣2k(k<0),與y軸交于點A,與x軸交于點B,AB=2.
(1)直接寫出點A,點B的坐標;
(2)如圖2,以AB為邊,在第一象限內畫出正方形ABCD,求直線DC的解析式;
(3)如圖3,(2)中正方形ABCD的對角線AC、BD即交于點G,函數y=mx和y=(x≠0)的圖象均經過點G,請利用這兩個函數的圖象,當mx>時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電信公司提供的移動通訊服務的收費標準有兩種套餐如表
套餐 | 套餐 | |
每月基本服務費(元) | 20 | 30 |
每月免費通話時間(分) | 100 | 150 |
每月超過免費通話時間加收通話費(元/分) | 0.4 | 0.5 |
李民選用了套餐
(1)5月份李民的通話時間為120分鐘,這個月李民應付話費多少元?
(2)李民6月份的通話時間超過了150分鐘,根據自己6月份的通話時間情況計算,如果自己選用套餐可以省4元錢,李民6月份的通話時間是多少分鐘?
(3)10月份李民改用了套餐,李民發(fā)現如果與9月份交相同的話費,10月份他可以多通話15分鐘,李民9月份交了多少話費?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com