【題目】在平行四邊形ABCD中,點O是對角線BD中點,點E在邊BC上,EO的延長線與邊AD交于點F,連接BF、DE,如圖1.
(1)求證:四邊形BEDF是平行四邊形;
(2)在(1)中,若DE=DC,∠CBD=45°,過點C作DE的垂線,與DE、BD、BF分別交于點G、H、R,如圖2.
①當(dāng)CD=6,CE=4時,求BE的長.
②探究BH與AF的數(shù)量關(guān)系,并給予證明.
【答案】(1)詳見解析;(2)①4﹣2;②AF=BH,詳見解析
【解析】
(1)由“ASA”可得△BOE≌△DOF,可得DF=BE,可得結(jié)論;
(2)①由等腰三角形的性質(zhì)可得EN=CN=2,由勾股定理可求DN,由等腰三角形的性質(zhì)可求BN的長,即可求解;
②如圖,過點H作HM⊥BC于點M,由“AAS”可證△HMC≌△CND,可得HM=CN,由等腰直角三角形的性質(zhì)可得BH=HM,即可得結(jié)論.
(1)證明:∵平行四邊形ABCD中,點O是對角線BD中點,
∴AD∥BC,BO=DO,
∴∠ADB=∠CBD,且∠DOF=∠BOE,BO=DO,
∴△BOE≌△DOF(ASA)
∴DF=BE,且DF∥BE,
∴四邊形BEDF是平行四邊形;
(2)①如圖2,過點D作DN⊥EC于點N,
∵DE=DC=6,DN⊥EC,
∴EN=CN=2,
∴DN===4,
∵∠DBC=45°,DN⊥BC,
∴∠DBC=∠BDN=45°,
∴DN=BN=4,
∴BE=BN﹣EN=4﹣2;
故答案為:BE=4﹣2.
②AF=BH,
理由如下:如圖,過點H作HM⊥BC于點M,
∵DN⊥EC,CG⊥DE,
∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°,
∴∠EDN=∠ECG,
∵DE=DC,DN⊥EC,
∴∠EDN=∠CDN,EC=2CN,
∴∠ECG=∠CDN,
∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN,
∴∠CDB=∠DHC,
∴CD=CH,且∠HMC=∠DNC=90°,∠ECG=∠CDN,
∴△HMC≌△CND(AAS)
∴HM=CN,
∵HM⊥BC,∠DBC=45°,
∴∠BHM=∠DBC=45°,
∴BM=HM,
∴BH=HM,
∵AD=BC,DF=BE,
∴AF=EC=2CN,
∴AF=2HM=BH.
故答案為:AF=BH.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】說明:在解答“結(jié)論應(yīng)用”時,從(A),(B)兩題中仸選一題做答.
問題探究
啟知學(xué)習(xí)小組在課外學(xué)習(xí)時,發(fā)現(xiàn)了這樣一個問題:如圖(1),在四邊形ABCD中,連接AC,BD,如果△ABC與△BCD的面積相等,那么AD∥BC.在小組交流時,他們在圖(1)中添加了如圖所示的輔助線,AE⊥BC于點E,DF⊥BC于點F.請你完成他們的證明過程.
結(jié)論應(yīng)用
在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過A(1,4),B(a,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥y軸于點D.
(A)(1)求反比例函數(shù)的表達(dá)式;
(2)如圖(2),已知b=1,AC,BD相交于點E,求證:CD∥AB.
(B)(1)求反比例函數(shù)的表達(dá)式;
(2)如圖(3),若點B在第三象限,判斷并證明CD與AB的位置關(guān)系.
我選擇:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2,對角線AC、BD相交于點O,點E、F分別在邊AD、AB上,且OE⊥OF,則四邊形AFOE的面積是( 。
A.4B.2C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=2.
(1)求k的值;
(2)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,在x軸上是否存在點P,使得PM+PN最?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系內(nèi),O為原點,點A的坐標(biāo)為(10,0),點B在第一象限內(nèi),BO=5,sin∠BOA=. 求:(1)點B的坐標(biāo);(2)cos∠BAO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)全體團員積極響應(yīng)團委的號召,開展了“牽手兒童,奉獻(xiàn)愛心”捐款活動.捐款活動結(jié)束后,某班班長將全班40名團員的捐款情況進行了統(tǒng)計,并繪制成如下的統(tǒng)計圖.
(1)這40名團員捐款的中位數(shù)是________元,眾數(shù)是________元;
(2)求這40名團員捐款的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
問題情境:
如圖1,已知點是正方形的兩條對角線的交點,以點為直角頂點的直角三角形的兩邊,分別過點,,且,,.
(1)的長度為________;
操作證明:
(2)如圖2,在(1)的條件下,將按如圖放置,若,分別與,相交于點,.請判斷和有怎樣的數(shù)量關(guān)系,并證明結(jié)論;
探究發(fā)現(xiàn):
(3)如圖3,在(1)的條件下,將按如圖放置,若點恰好在上,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和直線l在同一直角坐標(biāo)系中的圖象如圖所示,拋物線的對稱軸為直線x=﹣1,P1(x1,y1),P2(x2,y2)是拋物線上的點,P3(x3,y3)是直線l上的點,且x3<﹣1<x1<x2,則y1,y2,y3的大小關(guān)系是( 。
A. y1<y2<y3 B. y2<y3<y1 C. y3<y1<y2 D. y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合實踐課上,老師以“含30°的三角板和等腰三角形紙片”為模具與同學(xué)們開展數(shù)學(xué)活動.
已知,在等腰三角形紙片ABC中,CA=CB=5,∠ACB=120°,將一塊含30°角的足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖所示放置,頂點P在線段BA上滑動(點P不與A,B重合),三角尺的直角邊PM始終經(jīng)過點C,并與CB的夾角∠PCB=α,斜邊PN交AC于點D.
(1)特例感知
當(dāng)∠BPC=110°時,α= °,點P從B向A運動時,∠ADP逐漸變 (填“大”或“小”).
(2)合作交流
當(dāng)AP等于多少時,△APD≌△BCP,請說明理由.
(3)思維拓展
在點P的滑動過程中,△PCD的形狀可以是等腰三角形嗎?若可以,請求出夾角α的大小;若不可以,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com