(1)∵A(0,1),B(0,3),
∴AB=2,
∵△ABC是等腰三角形,且點(diǎn)C在x軸的正半軸上,
∴AC=AB=2,
∴OC=
=
.
∴C(
,0).(2分)
設(shè)直線BC的解析式為y=kx+3,
∴
k+3=0,
∴k=-
.
∴直線BC的解析式為y=-
x+3.(4分)
(2)∵拋物線y=ax
2+bx+c關(guān)于y軸對(duì)稱,
∴b=0.(5分)
又拋物線y=ax
2+bx+c經(jīng)過(guò)A(0,1),D(3,-2)兩點(diǎn).
∴
解得
∴拋物線的解析式是y=-
x
2+1.(7分)
在Rt△AOC中,OA=1,AC=2,易得∠ACO=30°.
在Rt△BOC中,OB=3,OC=
,易得∠BCO=60°.
∴CA是∠BCO的角平分線.
∴直線BC與x軸關(guān)于直線AC對(duì)稱.
點(diǎn)P關(guān)于直線AC的對(duì)稱點(diǎn)在x軸上,則符合條件的點(diǎn)P就是直線BC與拋物線y=-
x
2+1的交點(diǎn).(8分)
∵點(diǎn)P在直線BC:y=-
x+3上,故設(shè)點(diǎn)P的坐標(biāo)是(x,-
x+3).
又∵點(diǎn)P(x,-
x+3)在拋物線y=-
x
2+1上,
∴-
x+3=-
x
2+1.
解得x
1=
,x
2=2
.
故所求的點(diǎn)P的坐標(biāo)是P
1(
,0),P
2(2
,-3).(10分)
(3)要求PM+CM的取值范圍,可先求PM+C′M的最小值.
(I)當(dāng)點(diǎn)P的坐標(biāo)是OC=
時(shí),點(diǎn)P與點(diǎn)C重合,
故PM+CM=2CM.
顯然CM的最小值就是點(diǎn)C到y(tǒng)軸的距離為
,
∵點(diǎn)M是y軸上的動(dòng)點(diǎn),
∴PM+CM無(wú)最大值,
∴PM+CM≥2
.(13分)
(II)當(dāng)點(diǎn)P的坐標(biāo)是(2
,-3)時(shí),由點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)C′(-
,0),
故只要求PM+MC'的最小值,顯然線段PC'最短.易求得PC'=6.
∴PM+CM的最小值是6.
同理PM+CM沒(méi)有最大值,
∴PM+CM的取值范圍是PM+CM≥6.
綜上所述,當(dāng)點(diǎn)P的坐標(biāo)是(
,0)時(shí),PM+CM≥2
,
當(dāng)點(diǎn)P的坐標(biāo)是(2
,-3)時(shí),PM+CM≥6.(15分)