【題目】如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:3.求的值.
科目:初中數(shù)學 來源: 題型:
【題目】潮州旅游文化節(jié)開幕前,某鳳凰茶葉公司預測今年鳳凰茶葉能夠暢銷,就用32000元購進了一批鳳凰茶葉,上市后很快脫銷,茶葉公司又用68000元購進第二批鳳凰茶葉,所購數(shù)量是第一批購進數(shù)量的2倍,但每千克鳳凰茶葉進價多了10元.
(1)該鳳凰茶葉公司兩次共購進這種鳳凰茶葉多少千克?
(2)如果這兩批茶葉每千克的售價相同,且全部售完后總利潤率不低于20%,那么每千克售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,∠ACD=∠B,那么下列判斷中,不正確的是( )
A. △ADE∽△ABC B. △CDE∽△BCD C. △ADE∽△ACD D. △ADE∽△DBC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,
(1)求DE的長;
(2)過點EF作EF⊥CE,交AB于點F,求BF的長;
(3)過點E作EG⊥CE,交CD于點G,求DG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個全等的直角三角形 ABC 和 DEF 重疊在一起,其中∠A=60°,AC=1.固定△ABC 不動,將△DEF 進行如下操作:
(1)如圖,△DEF 沿線段 AB 向右平移(即 D 點在線段 AB 內移動),連接 DC、CF、FB,四邊形 CDBF 的形狀在不斷的變化,但它的面積不變化,請求出其面積.
(2)如圖,當 D 點移到 AB 的中點時,請你猜想四邊形CDBF 的形狀,并說明理由.
(3)如圖,△DEF 的 D 點固定在 AB 的中點,然后繞 D 點按順時針方向旋轉△DEF,使 DF 落在 AB 邊上,此時 F 點恰好與 B 點重合,連接 AE,請你求出 sinα的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與雙曲線交于點A.將直線向右平移6個單位后,與雙曲線交于點B,與x軸交于點C,若,則k的值為( 。
A. 12 B. 14 C. 18 D. 24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,點E為AB邊上的一點,點F為對角線BD上的一點,且EF⊥AB.若四邊形ABCD為正方形.
①如圖1,請直接寫出AE與DF的數(shù)量關系 ;
②將△EBF繞點B逆時針旋轉到圖2所示的位置,連接AE,DF,猜想AE與DF的數(shù)量關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,迎賓公園的噴水池邊上有半圓形的石頭(半徑為1.12m)作為裝飾,其中一塊石頭正前方5.88m處有一彩燈,某一時刻,該燈柱落在此半圓形石頭上的影長為0.56πm.如果同一時刻,一直立0.6m的桿子的影長為1.8m,則燈柱的高____m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y=x2+(2m﹣1)x+m2﹣1經(jīng)過坐標原點,且當x<0時,y隨x的增大而減小.
(1)求拋物線的解析式,并寫出y<0時,對應x的取值范圍;
(2)設點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作AB⊥x軸于點B,DC⊥x軸于點C.
①當BC=1時,直接寫出矩形ABCD的周長;
②設動點A的坐標為(a,b),將矩形ABCD的周長L表示為a的函數(shù)并寫出自變量的取值范圍,判斷周長是否存在最大值?如果存在,求出這個最大值,并求出此時點A的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com