【題目】期中考試臨近,某校初二年級教師對復(fù)習(xí)課中學(xué)生參與的深度與廣度進(jìn)行評價調(diào)查,其評價項(xiàng)目為主動質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評價組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了_________名學(xué)生;
(2)在扇形統(tǒng)計圖中,項(xiàng)目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為______度;
(3)請將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有8000名初二學(xué)生,那么在復(fù)習(xí)課中,“獨(dú)立思考”的學(xué)生約有多少人?
【答案】(1)560,(2) 54°(3) 見解析(4)2400
【解析】
(1)由“專注聽講”的學(xué)生人數(shù)除以占的百分比求出調(diào)查學(xué)生總數(shù)即可;
(2)由“主動質(zhì)疑”占的百分比乘以360°即可得到結(jié)果;
(3)求出“講解題目”的學(xué)生數(shù),補(bǔ)全統(tǒng)計圖即可;
(4)求出“獨(dú)立思考”學(xué)生占的百分比,乘以8000即可得到結(jié)果.
解:(1)根據(jù)題意得:224÷40%=560(名),
則在這次評價中,一個調(diào)查了560名學(xué)生;
故答案為:560;
(2)根據(jù)題意得:×360°=54°,
則在扇形統(tǒng)計圖中,項(xiàng)目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為54度;
故答案為:54;
(3)“講解題目”的人數(shù)為560﹣(84+168+224)=84,補(bǔ)全統(tǒng)計圖如下:
(4)根據(jù)題意得:8000××100%=2400(人),
則“獨(dú)立思考”的學(xué)生約有2400人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義新運(yùn)算:.
例如:32=3(3-2)=3,-14=-1(-1-4)=5.
(1)請直接寫出3a=b的所有正整數(shù)解;
(2)已知2a=5b-2m,3b=5a+m,說明:12a+11b的值與m無關(guān);
(3)已知a>1,記M=abb,N=bab,試比較M,N的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點(diǎn)C,將一個三角板的直角頂點(diǎn)與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長線)相交于點(diǎn)D,E.
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(如圖①),易證:OD+OE=OC;
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時,即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)判斷DF與是⊙O的位置關(guān)系,并證明你的結(jié)論。
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,DE∥AB,DF∥AC.
(1)求證:∠A=∠EDF.
(2)點(diǎn)G是線段AC上的一點(diǎn),連接FG,DG.
①若點(diǎn)G是線段AE的中點(diǎn),請你在圖2中補(bǔ)全圖形,判斷∠AFG,∠EDG,∠DGF之間的數(shù)量關(guān)系,并證明.
②若點(diǎn)G是線段EC上的一點(diǎn),請你直接寫出∠AFG,∠EDG,∠DGF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為應(yīng)對越來越復(fù)雜的交通狀況,某城市對其道路進(jìn)行拓寬改造,工程隊(duì)在工作了一段時間后,因雨被迫停工幾天,隨后工程隊(duì)加快了施工進(jìn)度,按時完成了拓寬改造任務(wù).下面能反映該工程尚未改造的道路(米)與時間(天)的關(guān)系的大致圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且AB=AE,延長AB與DE的延長線交于點(diǎn)F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某社區(qū)20~60歲居民最喜歡的支付方式,某興趣小組對社區(qū)內(nèi)該年齡段的部分居民展開了隨機(jī)問卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:
(1)參與問卷調(diào)查的總?cè)藬?shù)為 ,扇形統(tǒng)計圖中“B”對應(yīng)的扇形的圓心角度數(shù)等于 °;
(2)補(bǔ)全條形統(tǒng)計圖.
(3)該社區(qū)中20~60歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com