如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線(xiàn)PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過(guò)點(diǎn)P、B、E的拋物線(xiàn)的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線(xiàn)上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說(shuō)明理由;若存在,求出點(diǎn)Q的坐標(biāo).
(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,則∠BPE=90度.
∴∠OPE+∠APB=90°.
又∵∠APB+∠ABP=90°,
∴∠OPE=∠PBA.
∴Rt△POERt△BPA.
PO
OE
=
BA
AP

x
y
=
3
4-x

∴y=
1
3
x(4-x)=-
1
3
x2+
4
3
x(0<x<4).
且當(dāng)x=2時(shí),y有最大值
4
3


(2)由已知,△PAB、△POE均為等腰直角三角形,可得P(1,0),E(0,1),B(4,3).
設(shè)過(guò)此三點(diǎn)的拋物線(xiàn)為y=ax2+bx+c,則
c=1
a+b+c=0
16a+4b+c=3

a=
1
2
b=-
3
2
c=1

y=
1
2
x2-
3
2
x+1.

(3)由(2)知∠EPB=90°,即點(diǎn)Q與點(diǎn)B重合時(shí)滿(mǎn)足條件.
直線(xiàn)PB為y=x-1,與y軸交于點(diǎn)(0,-1).
將PB向上平移2個(gè)單位則過(guò)點(diǎn)E(0,1),
∴該直線(xiàn)為y=x+1.
y=x+1
y=
1
2
x2-
3
2
x+1

x=5
y=6

∴Q(5,6).
故該拋物線(xiàn)上存在兩點(diǎn)Q(4,3)、(5,6)滿(mǎn)足條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y=
1
2
x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長(zhǎng)線(xiàn)交拋物線(xiàn)于點(diǎn)D(5,2),連接BC、AD.
(1)求C點(diǎn)的坐標(biāo)及拋物線(xiàn)的解析式;
(2)將△BCH繞點(diǎn)B按順時(shí)針旋轉(zhuǎn)90°后再沿x軸對(duì)折得到△BEF(點(diǎn)C與點(diǎn)E對(duì)應(yīng)),判斷點(diǎn)E是否落在拋物線(xiàn)上,并說(shuō)明理由;
(3)設(shè)過(guò)點(diǎn)E的直線(xiàn)交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q.問(wèn)是否存在點(diǎn)P,使直線(xiàn)PQ分梯形ABCD的面積為1:3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB是自動(dòng)噴灌設(shè)備的水管,點(diǎn)A在地面,點(diǎn)B高出地面1.5米.在B處有一自動(dòng)旋轉(zhuǎn)的噴水頭,在每一瞬間,噴出的水流呈拋物線(xiàn)狀,噴頭B與水流最高點(diǎn)C的連線(xiàn)與水平線(xiàn)成45°角,水流的最高點(diǎn)C與噴頭B高出2米,在如圖的坐標(biāo)系中,水流的落地點(diǎn)D到點(diǎn)A的距離是______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y=
3
8
x2-
3
4
x+c分別交x軸的負(fù)半軸和正半軸于點(diǎn)A(x1,0)、B(x2,0),交y軸的負(fù)軸于點(diǎn)C,且tan∠OAC=2tan∠OBC,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向終點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)向終點(diǎn)C運(yùn)動(dòng),P、Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位長(zhǎng)度,且當(dāng)其中有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間是t秒.

(1)試說(shuō)明OB=2OA;
(2)求拋物線(xiàn)的解析式;
(3)當(dāng)t為何值時(shí),△PBQ是直角三角形?
(4)當(dāng)t為何值時(shí),△PBQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y=-x2+bx+c的頂點(diǎn)為Q,與x軸交于A(-1,0)、B(5,0)兩點(diǎn),與y軸交于C點(diǎn).
(1)直接寫(xiě)出拋物線(xiàn)的解析式及其頂點(diǎn)Q的坐標(biāo);
(2)在該拋物線(xiàn)的對(duì)稱(chēng)軸上求一點(diǎn)P,使得△PAC的周長(zhǎng)最。(qǐng)?jiān)趫D中畫(huà)出點(diǎn)P的位置,并求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=AC=5,BC=6,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB向點(diǎn)B移動(dòng),(點(diǎn)P與點(diǎn)A、B不重合),作PDBC交AC于點(diǎn)D,在DC上取點(diǎn)E,以DE、DP為鄰邊作平行四邊形PFED,使點(diǎn)F到PD的距離FH=
1
6
PD
,連接BF,設(shè)AP=x.
(1)△ABC的面積等于______;
(2)設(shè)△PBF的面積為y,求y與x的函數(shù)關(guān)系,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=ax2+4x+a的最大值是3,則a的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

3
16
可表示成不同的隨機(jī)事件發(fā)生的概率,請(qǐng)你設(shè)計(jì)一種實(shí)驗(yàn),使某種事件發(fā)生的概率是
3
16
.列出圖表表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

下表給出了代數(shù)式x2+bx+c與x的一些對(duì)應(yīng)值:
x-101234
X2+bx+c3-13
(1)根據(jù)表格中的數(shù)據(jù),確定b、c的值,并填齊表格中空白處的對(duì)應(yīng)值;
(2)代數(shù)式x2+bx+c是否有最小值?如果有,求出最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由;
(3)設(shè)y=x2+bx+c的圖象與x軸的交點(diǎn)為A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C,P點(diǎn)為線(xiàn)段AB上一動(dòng)點(diǎn),過(guò)P點(diǎn)作PEAC交BC于E,連接PC,當(dāng)△PEC的面積最大時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案