精英家教網 > 初中數學 > 題目詳情
下表給出了代數式x2+bx+c與x的一些對應值:
x-101234
X2+bx+c3-13
(1)根據表格中的數據,確定b、c的值,并填齊表格中空白處的對應值;
(2)代數式x2+bx+c是否有最小值?如果有,求出最小值;如果沒有,請說明理由;
(3)設y=x2+bx+c的圖象與x軸的交點為A、B兩點(A點在B點左側),與y軸交于點C,P點為線段AB上一動點,過P點作PEAC交BC于E,連接PC,當△PEC的面積最大時,求P點的坐標.
(1)由題意知:
c=3
4+2b+c=-1
解得b=-4(1分)
x-101234
X2+bx+c830-103
(2)∵x2-4x+3=(x-2)2-1≥-1
∴x2-4x+3有最小值,最小值為-1;(3分)

(3)由(1)可知,點A、B的坐標分別為(1,0),(3,0)、設點P的坐標為(x,0),過點E作EM⊥x軸于點M,
∵PEAC,∴△EPB△CAB
∵EM、CO分別為△EPB與△CAB邊上的高,
EM
CO
=
PB
AB
(4分)
∵CO=3,AB=2,PB=3-x,∴EM=
3
2
(3-x)
(5分)
∴S△PEC=S△PBC-S△PBE=
1
2
PB•CO-
1
2
PB•EM(6分)
=
1
2
(3-x)[3-
3(3-x)
2
]
=-
3
4
(x-2)2+
3
4
(7分)
∴當x=2時,S有最大值
3
4
;
∴當點P的坐標為(2,0)時,△PEC的面積最大.(8分)
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c與x軸相交于A、B,點B的坐標為(10,0),頂點M的坐標為(4,8),點P從點M出發(fā),以每秒1個單位的速度沿線段MA向A點運動;點Q從點A出發(fā),以每秒2個單位的速度沿AB向B點運動,若P、Q同時出發(fā),當其中的一點到達終點時,另一點也隨之停止運動,設運動時間為t秒鐘.
(1)求拋物線的解析式;
(2)設△APQ的面積為S,求S與t之間的函數關系式,△APQ的面積是否有最大值?若有,請求出其最大值;若沒有,請說明理由;
(3)當t為何值時,△APQ為等腰三角形?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

二次函數y=x2+bx+c的圖象與y軸的負半軸相交于點C(0,-3)與x軸正半軸相交于點B,且OB=OC.
①求B點坐標;
②求函數的解析式及最小值;
③寫出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,Rt△OAB的斜邊OA在x軸的正半軸上,直角的頂點B在第一象限內,已知點A(10,0),△OAB的面積為20.
(1)求B點的坐標;
(2)求過O、B、A三點拋物線的解析式;
(3)判斷該拋物線的頂點P與△OAB的外接圓的位置關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

用長度為12cm的鐵絲圍成一個矩形,矩形的最大面積是( 。
A.9cm2B.10cm2C.12cm2D.16cm2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,在平面直角坐標系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點P是OA邊上的動點(與點O、A不重合).現將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當的點E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設P(x,0),E(0,y),求y關于x的函數關系式,并求y的最大值;
(2)如圖2,若翻折后點D落在BC邊上,求過點P、B、E的拋物線的函數關系式;
(3)在(2)的情況下,在該拋物線上是否存在點Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點Q的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某商家經銷一種綠茶,已知綠茶每千克成本50元,在試銷時間內發(fā)現:
單價定為每千克70元時,月銷售量為l00千克,銷售單價每提高5元,月銷量減少10,設該綠茶的銷售單價為每千克x元(x≥70),月銷售利潤為y(元).
(1)求y與x之間的函數關系式(不必寫出自變量x的取值范圍);
(2)若用于裝修門面已投資3000元,該商家在第一個月里,銷售單價為每千克85元,在第二個月里受物價部門干預,銷售單價不得高于90元,在第二個月銷售結束后發(fā)現這兩個月不僅收回投資,而且剛好獲得1700元的利潤,求第二個月時該綠茶的銷售單價為多少元?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,是某河床橫斷面的示意圖.據該河段的水文資料顯示,當水面寬為40米時,河水最深為2米.
(1)請在恰當的平面直角坐標系中求出與該拋物線型河床橫斷面對應的函數關系式;
(2)當水面寬度為36米時,一艘吃水深度(船底部到水面的距離)為1.8米的貨船能否在這個河段安全通過?為什么?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

定義[p,q]為一次函數y=px+q的特征數.
(1)若特征數是[2,k-2]的一次函數為正比例函數,求k的值;
(2)設點A,B分別為拋物線y=(x+m)(x-2)與x,y軸的交點,其中m>0,且△OAB的面積為4,O為原點,求圖象過A,B兩點的一次函數的特征數.

查看答案和解析>>

同步練習冊答案