【題目】為了備戰(zhàn)初三物理、化學(xué)實(shí)驗(yàn)操作考試,某校對(duì)初三學(xué)生進(jìn)行了模擬訓(xùn)練,物理、化學(xué)各有4各不同的操作實(shí)驗(yàn)題目,物理用番號(hào)①、②、③、④代表,化學(xué)用字母a、b、c、d表示,測(cè)試時(shí)每名學(xué)生每科只操作一個(gè)實(shí)驗(yàn),實(shí)驗(yàn)的題目由學(xué)生抽簽確定,第一次抽簽確定物理實(shí)驗(yàn)題目,第二次抽簽確定化學(xué)實(shí)驗(yàn)題目.
(1)請(qǐng)用樹形圖法或列表法,表示某個(gè)同學(xué)抽簽的各種可能情況.
(2)小張同學(xué)對(duì)物理的①、②和化學(xué)的b、c號(hào)實(shí)驗(yàn)準(zhǔn)備得較好,他同時(shí)抽到兩科都準(zhǔn)備的較好的實(shí)驗(yàn)題目的概率是多少?

【答案】
(1)解:畫樹狀圖得:

如圖,可得某個(gè)同學(xué)抽簽的所有等可能情況有16種


(2)解:∵小張同時(shí)抽到兩科都準(zhǔn)備的較好的實(shí)驗(yàn)題目的有①b,①c,②b,②c共4種情況,

∴他同時(shí)抽到兩科都準(zhǔn)備的較好的實(shí)驗(yàn)題目的概率是 =


【解析】(1)首先根據(jù)題意畫出樹狀圖,然后利用樹狀圖即可求得所有等可能的結(jié)果;(2)由小張同時(shí)抽到兩科都準(zhǔn)備的較好的實(shí)驗(yàn)題目的有①b,①c,②b,②c共4種情況,利用概率公式即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,轉(zhuǎn)盤上1、2、3、4四個(gè)數(shù)字分別代表雞、猴、鼠、羊四種生肖郵票(每種郵票各兩枚,雞年郵票面值“80分”,其它郵票都是面值“1.20元”),轉(zhuǎn)動(dòng)轉(zhuǎn)盤后,指針每落在某個(gè)數(shù)字所在扇形一次就表示獲得該種郵票一枚.
(1)任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,獲得猴年郵票的概率是;
(2)任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,求獲得的兩枚郵票可以郵寄一封需2.4元郵資的信件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4張寫著以下數(shù)字的卡片,請(qǐng)按要求抽出卡片,完成下列各題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字之積最大,最大值是________.

(2)從中取出2張卡片,使這2張卡片上數(shù)字之差最小,最小值是________.

(3)從中取出4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使結(jié)果為24,請(qǐng)寫出一種符合要求的運(yùn)算式子________.(注:4個(gè)數(shù)字都必須用到且只能用一次.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,AD平分BAC,DGBC且平分BC,DEABE,DFACF.求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點(diǎn),過點(diǎn)C作AB的平行線交AE的延長(zhǎng)線于點(diǎn)F,連接BF.
(1)求證:CF=AD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某商場(chǎng)有一雙向運(yùn)行的自動(dòng)扶梯,扶梯上行和下行的速度保持不變且相同,甲、乙兩人同時(shí)站上了此扶梯的上行和下行端,甲站上上行扶梯的同時(shí)又以0.8m/s的速度往上跑,乙站上下行扶梯后則站立不動(dòng)隨扶梯下行,兩人在途中相遇,甲到達(dá)扶梯頂端后立即乘坐下行扶梯,同時(shí)以0.8m/s的速度往下跑,而乙到達(dá)底端后則在原地等候甲.圖2中線段OB、AB分別表示甲、乙兩人在乘坐扶梯過程中,離扶梯底端的路程y(m)與所用時(shí)間x(s)之間的部分函數(shù)關(guān)系,結(jié)合圖象解答下列問題:
(1)點(diǎn)B的坐標(biāo)是;
(2)求AB所在直線的函數(shù)關(guān)系式;
(3)乙到達(dá)扶梯底端后,還需等待多長(zhǎng)時(shí)間,甲才到達(dá)扶梯底端?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小平所在的學(xué)習(xí)小組發(fā)現(xiàn),車輛轉(zhuǎn)彎時(shí),能否順利通過直角彎道的標(biāo)準(zhǔn)是,車輛是否可以行駛到和路的邊界夾角是45°的位置(如圖1中②的位置).例如,圖2是某巷子的俯視圖,巷子路面寬4m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時(shí),連接EF,交CD于點(diǎn)G,若GF的長(zhǎng)度至少能達(dá)到車身寬度,即車輛能通過.
(1)小平認(rèn)為長(zhǎng)8m,寬3m的消防車不能通過該直角轉(zhuǎn)彎,請(qǐng)你幫他說明理由;
(2)小平提出將拐彎處改為圓。 是以O(shè)為圓心,分別以O(shè)M和ON為半徑的弧),長(zhǎng)8m,寬3m的消防車就可以通過該彎道了,具體的方案如圖3,其中OM⊥OM′,你能幫小平算出,ON至少為多少時(shí),這種消防車可以通過該巷子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將平行四邊形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)40°,得到平行四邊形AB′C′D′,若點(diǎn)B′恰好落在BC邊上,則∠DC′B′的度數(shù)為(

A. 60° B. 65° C. 70° D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ACB和△DCE均為等邊三角形,若B,D,E在同一直線上,連接AE.

(1)請(qǐng)你在圖中找出一個(gè)與△AEC全等的三角形:;
(2)∠AEB的度數(shù)為;CE,AE,BE的數(shù)量關(guān)系為
(3)如圖2,△ACB是等腰直角三角形,∠AEB=90°,連接CE,過點(diǎn)C作CD⊥CE,交BE于點(diǎn)D,試探究CE,AE,BE的數(shù)量關(guān)系,并說明理由.

(4)如圖3,在正方形ABCD中,CD=5 ,點(diǎn)P為正方形ABCD外一點(diǎn),∠APC=90°,且AP=6,試求點(diǎn)P到CD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案