【題目】如圖,在△ABC中,EF∥CD,DE∥BC.

(1)求證:AF:FD=AD:DB;

(2)若AB=15,AD:BD=2:1,求DF的長.

【答案】(1)詳見解析;(2).

【解析】試題分析:(1)根據(jù)平行線分線段成比例定理證得,,由此即可證得結(jié)論;(2)由AB=15,AD:BD=2:1,即可得AD=10,再由AF:FD=AD:DB得到AF:FD=2:1,所以AF=2DF,又因AF+DF=10,即可得2DF+DF=10,所以DF=

試題解析:

(1)證明:∵EF∥CD,

,

∵DE∥BC,

(2)∵AD:BD=2:1,

∴BD=AD,

∴AD+AD=15,

∴AD=10,

∵AF:FD=AD:DB,

∴AF:FD=2:1,

∴AF=2DF,

∵AF+DF=10,

∴2DF+DF=10,

∴DF=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,AC為弦,ODBC,交ACD,BC=4cm.

(1)求證:ACOD;

(2)求OD的長;

(3)若sinA=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:

(1)九(1)班的學生人數(shù)為40,并把條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中m=10,n=20,表示“足球”的扇形的圓心角是72度;

(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A、B兩地相距50米,小烏龜從A地出發(fā)前往B地,第一次它前進1米,第二次它后退2米,第三次再前進3米,第四次又向后退4,按此規(guī)律行進,如果A地在數(shù)軸上表示的數(shù)為﹣16

1)求出B地在數(shù)軸上表示的數(shù);

2)若B地在原點的右側(cè),經(jīng)過第七次行進后小烏龜?shù)竭_點P,第八次行進后到達點Q,點P、點QA地的距離相等嗎?說明理由?

3)若B地在原點的右側(cè),那么經(jīng)過100次行進后,小烏龜?shù)竭_的點與點B之間的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2=|m|

1)求證:對于任意實數(shù)m,方程總有兩個不相等的實數(shù)根;

2)若方程的一個根是1,求m的值及方程的另一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于任意有理數(shù)a,b,

定義運算:aba(a+b)1,等式右邊是通常的加法、減法、乘法運算.例如,252(2+5)113

()[1(2)]3的值;

()對于任意有理教mn請你重新定義一種運算,使得5320,寫出你定義的運算:mn_____(用含m,n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,BAD=120°,點E是AB的中點,點F是AC上的一動點,則EF+BF的最小值是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點E是邊CD上的一點,且BC=EC,CFBEAB于點F,PEB延長線上一點,下列結(jié)論:①BE平分∠CBF;CF平分∠DCB;BC=FB;PF=PC.其中正確的有_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。

(1)從箱子中任意摸出一個球是白球的概率是多少?

(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。

查看答案和解析>>

同步練習冊答案