【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
【答案】C
【解析】解:①∵AD平分△ABC的外角∠EAC, ∴∠EAD=∠DAC,
∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,
故①正確.
②由(1)可知AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABC=2∠ADB,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,
故②正確.
③在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
∴∠ADC=90°﹣∠ABD,
故③正確;
④∵∠BAC+∠ABC=∠ACF,
∴ ∠BAC+ ∠ABC= ∠ACF,
∵∠BDC+∠DBC= ∠ACF,
∴ ∠BAC+ ∠ABC=∠BDC+∠DBC,
∵∠DBC= ∠ABC,
∴ ∠BAC=∠BDC,即∠BDC= ∠BAC.
故④錯誤.
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行線的判定的相關(guān)知識,掌握同位角相等,兩直線平行;內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行,以及對三角形的“三線”的理解,了解1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=x2﹣2x+m(m為常數(shù))與x軸沒有公共點(diǎn),則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④<a<
⑤b>c.
其中含所有正確結(jié)論的選項(xiàng)是( )
A.①③ B.①③④ C.②④⑤ D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).
(1)圖②中的陰影部分的面積為;
(2)觀察圖②請你寫出 (a+b)2 , (a﹣b)2 , ab之間的等量關(guān)系是;
(3)根據(jù)(2)中的結(jié)論,若x+y=4,xy= ,則(x﹣y)2=;
(4)實(shí)際上通過計算圖形的面積可以探求相應(yīng)的等式.如圖③,你發(fā)現(xiàn)的等式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①矩形是軸對稱圖形,兩條對角線所在的直線是它的對稱軸;②兩條對角線相等的四邊形是矩形;③有兩個角相等的平行四邊形是矩形;④兩條對角線相等且互相平分的四邊形是矩形;⑤兩條對角線互相垂直平分的四邊形是矩形.其中,正確的有 ( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,不正確的是( )
A.三個角的度數(shù)之比為1:3:4的三角形是直角三角形
B.三個角的度數(shù)之比為3:4:5的三角形是直角三角形
C.三邊長度之比為3:4:5的三角形是直角三角形
D.三邊長度之比為9:40:41的三角形是直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于y的一元二次方程ky2﹣2y﹣1=0有兩個不相等的實(shí)數(shù)根,則k的取值范圍是( )
A. k>﹣1 B. k>﹣1且k≠0 C. k<1 D. k<1 且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的一條邊AD=8 cm,點(diǎn)P在CD邊上,AP=AB, PC=4cm,連結(jié)PB.點(diǎn)M從點(diǎn)P出發(fā),沿PA方向勻速運(yùn)動(點(diǎn)M與點(diǎn)P、A不重合);點(diǎn)N同時從點(diǎn)B出發(fā),沿線段AB的延長線勻速運(yùn)動,連結(jié)MN交PB于點(diǎn)F.
(1)求AB的長;
(2)若點(diǎn)M的運(yùn)動速度為1cm/s,點(diǎn)N的運(yùn)動速度為2cm/s,△AMN的面積為S,點(diǎn)M和點(diǎn)N的運(yùn)動時間為,求S與的函數(shù)關(guān)系式,并求S的最大值;
(3)若點(diǎn)M和點(diǎn)N的運(yùn)動速度相等,作ME⊥BP于點(diǎn)E.試問當(dāng)點(diǎn)M、N在運(yùn)動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一條長為40cm的繩子圍成一個面積為acm2的長方形,a的值不可能為( )
A. 20B. 40C. 100D. 120
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com