分析 (1)連接BD,由AB為直徑可得出BD⊥AC,結(jié)合等腰三角形的性質(zhì)即可得出∠CBD=∠ABD,再由切線的性質(zhì)即可得出∠FAB=∠CAF+∠CAB=90°,由同角的余角相等即可證出∠CAF=∠CBD;
(2)連接AE,設(shè)CE=a,則EB=4a,BA=BC=5a,由AB為直徑可得出∠AEB=90°,利用勾股定理即可得出AE=3a,結(jié)合∠B=∠B即可證出△AEB∽△FAB,根據(jù)相似三角形的性質(zhì)即可得出AF=$\frac{12}{5}$a,在Rt△AEC中,利用勾股定理即可求出a值,將其代入AF=$\frac{12}{5}$a中即可得出結(jié)論.
解答 (1)證明:連接BD,如圖1所示.
∵AB為直徑,
∴∠ADB=90°,
∴BD⊥AC.
∵BA=BC,
∴AD=CD,∠CBD=∠ABD.
∵AF與⊙O相切,
∴∠FAB=∠CAF+∠CAB=90°.
又∵∠CAB+∠ABD=90°,
∴∠CAF=∠ABD=∠CBD.
(2)解:連接AE,如圖2所示.
設(shè)CE=a,則EB=4a,BA=BC=5a.
∵AB為直徑,
∴∠AEB=90°,
∴AE=$\sqrt{A{B}^{2}-E{B}^{2}}$=3a.
∵∠B=∠B,∠AEB=∠FAB=90°,
∴△AEB∽△FAB,
∴$\frac{FA}{AE}=\frac{EB}{AB}$,
∴FA=$\frac{AE•EB}{AB}$=$\frac{12}{5}$a.
在Rt△AEC中,AE=3a,CE=a,AC=2$\sqrt{10}$,
∴AE2+CE2=AC2,即9a2+a2=40,
解得:a=2或a=-2(舍去),
∴AF=$\frac{12}{5}$a=$\frac{24}{5}$.
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、切線的性質(zhì)以及勾股定理,解題的關(guān)鍵是:(1)根據(jù)同角的余角相等找出∠CAF=∠ABD;(2)根據(jù)相似三角形的性質(zhì)找出AF=$\frac{12}{5}$CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,4) | B. | (-1,-4) | C. | (4,-1) | D. | (1,-4) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | -50 | D. | 51 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com