如圖1,梯形中,,.一個動點從點出發(fā),以每秒個單位長度的速度沿線段方向運動,過點,交折線段于點,以為邊向右作正方形,點在射線上,當點到達點時,運動結束.設點的運動時間為秒().
(1)當正方形的邊恰好經(jīng)過點時,求運動時間的值;
(2)在整個運動過程中,設正方形與△的重合部分面積為,請直接寫出之間的函數(shù)關系式和相應的自變量的取值范圍;
(3)如圖2,當點在線段上運動時,線段與對角線交于點,將△沿翻折,得到△,連接.是否存在這樣的,使△是等腰三角形?若存在,求出對應的的值;若不存在,請說明理由.
(1)當t=4時,正方形PQMN的邊MN恰好過點D
(2)
(3)當時,∆PEF是等腰三角形

試題分析:(1)作AG⊥BC,DH⊥BC,垂足分別為G、H,可以得出四邊形AGHD為矩形,根據(jù)矩形的性質(zhì)及相關條件可以得出△ABG≌△DCH,可以求出BG=CH的值,再由勾股定理就可以求出AG=DH的值,就可以求出BP的值,即可以求出結論t的值;
(2)運用求分段函數(shù)的方法,分四種情況,當0<t≤3,當3<t≤4,4<t≤7,7<t≤8時,運用梯形的面積公式和三角形的面積公式就可以求出S的值;
(3)先由條件可以求出EF=EQ=PQ-EP=4-t,分為三種情況:EF=EP時可以求出t值,當FE=FP時,作FR⊥EP,垂足為R,可以求出t值,當PE=PF時,作PS⊥EF,垂足為S,可以求出t值.
試題解析:(1)如圖2,作AG⊥BC于G,DH⊥BC于H,則四邊形AGHD是矩形。
∵梯形ABCD中,AB=AD=DC=5,
∴∆ABG≌∆DCH,
,
∴當正方形PQMN的邊MN恰好過點D時,點M與點D重合,此時MQ=4,
,
∴當t=4時,正方形PQMN的邊MN恰好過點D。
(2)

如圖1,當0<t≤3時,BP=t,∵

如圖3,當3<t≤4時,BP="t,"


如圖4,當4<t≤7時,BP="t,"

如圖5,當7<t≤8時,BP="t,"


(3)∵,


由(1)可知

如圖6,當EF=EP時,

如圖7,當FE=FP時,作FR⊥EP于R,∴


如圖8,當PE=PF時,作PS⊥EF于S,∴


∴當時,∆PEF是等腰三角形。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,連接OD,過點D作⊙O的切線,交AB延長線于點E,交AC于點F.
(1)求證:OD∥AC;
(2)當AB=10,時,求AF及BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在數(shù)學課上,同學們研究圖形的拼接問題.
比如:兩個全等的等腰直角三角形紙片既能拼成一個大的等腰直角三角形(如圖1),也能拼成一個正方形(如圖2).

(1)現(xiàn)有兩個相似的直角三角形紙片,各有一個角為,恰好可以拼成另一個含有30°角的直角三角形,那么在原來的兩個三角形紙片中,較大的與較小的紙片的相似比為________,請畫出拼接的示意圖;
(2)現(xiàn)有一個矩形恰好由三個各有一個角為的直角三角形紙片拼成,請你畫出兩種不同拼法的示意圖.在拼成這個矩形的三角形中,若每種拼法中最小的三角形的斜邊長為,請直接寫出每種拼法中最大三角形的斜邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果線段上一點P把線段分割為兩條線段PA,PB,當PA2=PB•AB,即PA≈0.618AB時,則稱點P是線段AB的黃金分割點,現(xiàn)已知線段AB=10,點P是線段AB的黃金分割點,如圖所示,那么線段PB的長約為( 。
A.6.18B.0.382C.0.618D.3.82

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

右面圖形中,形狀相同的圖形有( 。
A.1組B.2組C.3組D.4組

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,梯形ABCD中AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,則△ABC與△DCA的面積比為
A.2:3B.2:5C.4:9D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在?ABCD中,F(xiàn)是BC上的一點,直線DF與AB的延長線相交于點E,BP∥DF,且與AD相交于點P,請從圖中找出一組相似的三角形:          
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在邊長為9的正方形ABCD中, F為AB上一點,連接CF.過點F作FE⊥CF,交AD于點E,若AF=3,則AE等于(   ) 
A.1B.1.5C.2D.2.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AB=10,AD=4,點P是邊AB上一點,若△APD與△BPC相似,則滿足條件的點P有   個.

查看答案和解析>>

同步練習冊答案