【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A、B、D的坐標(biāo)分別為(0,5)、(0,2)、(4,5),直線l的解析式為y=kx+2﹣4k(k>0).
(1)當(dāng)直線l經(jīng)過原點(diǎn)O時(shí),求一次函數(shù)的解析式;
(2)通過計(jì)算說明:不論k為何值,直線l總經(jīng)過點(diǎn)C;
(3)在(1)的條件下,點(diǎn)M為直線l上的點(diǎn),平面內(nèi)是否存在x軸上方的點(diǎn)N,使以點(diǎn)O、A、M、N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo):若不存在,請(qǐng)說明理由.
【答案】(1);(2)詳見解析;(3)存在,滿足條件的點(diǎn)M為或或.
【解析】
(1)將原點(diǎn)坐標(biāo)代入解析式可求出k的值,即可求解;
(2)由題意可得點(diǎn)C(4,2),當(dāng)x=4時(shí),y=4k+2﹣4k=2,則可得不論k為何值,直線l總經(jīng)過點(diǎn)C;
(3)分OA為邊,OA為對(duì)角線兩種情況討論,由菱形的性質(zhì)可求解.
解:(1)∵直線l經(jīng)過原點(diǎn),
∴把點(diǎn)(0,0)代入y=kx+2﹣4k,
得:2﹣4k=0,
解得:,
∴一次函數(shù)的解析式為:;
(2)由題意可知,點(diǎn)C的坐標(biāo)為(4,2),
當(dāng)x=4時(shí),y=4k+2﹣4k=2,
∴不論k為何值,直線l總經(jīng)過點(diǎn)C;
(3)設(shè)點(diǎn)M(x,x)
①以OA為菱形的邊,此時(shí),OM=OA=5,
∴
∴x=±2,
點(diǎn)M的坐標(biāo)為或;
②以OA為菱形的一條對(duì)角線,
此時(shí)MN垂直平分OA,
則x=
∴x=5
則M的坐標(biāo)為;
綜上所述:滿足條件的點(diǎn)M為或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)是線段上任意一點(diǎn),分別過點(diǎn)、作直線的垂線,垂足為、,,,則的最大值是______________,最小值是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長(zhǎng)為1的小正方形組成的10×5網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),點(diǎn)A,B,C,D均在格點(diǎn)上,在網(wǎng)格中將點(diǎn)B按下列步驟移動(dòng)第一步:點(diǎn)B繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°得到點(diǎn)B1;第二步:點(diǎn)B1繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)B2;第三步:點(diǎn)B2繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°回到點(diǎn)B
(1)請(qǐng)用圓規(guī)畫出點(diǎn)B→B1→B2→B經(jīng)過的路徑;
(2)所畫圖形是_______圖形;
(3)求所畫圖形的周長(zhǎng)(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)E.
(1)當(dāng)∠BAC為銳角時(shí),如圖①,求證:∠CBE=∠BAC;
(2)當(dāng)∠BAC為鈍角時(shí),如圖②,CA的延長(zhǎng)線與⊙O相交于點(diǎn)E,(1)中的結(jié)論是否仍然成立?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)興趣小組,對(duì)函數(shù)y=|x﹣1|+1的圖象和性質(zhì)進(jìn)行了探究,探究過程如下:
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對(duì)應(yīng)值如表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 5 | 4 | m | 2 | 1 | 2 | 3 | 4 | 5 | … |
其中m= .
(2)如圖,在平面直角坐標(biāo)系xOy中,描出了上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象:
(3)根據(jù)畫出的函數(shù)圖象特征,仿照示例,完成下列表格中的函數(shù)變化規(guī)律:
序號(hào) | 函數(shù)圖象特征 | 函數(shù)變化規(guī)律 |
示例1 | 在直線x=1的右側(cè),函數(shù)圖象呈上升狀態(tài) | 當(dāng)x>1時(shí),y隨x的增大而增大 |
① | 在直線x=1的左側(cè),函數(shù)圖象呈下降狀態(tài) |
|
示例2 | 函數(shù)圖象經(jīng)過點(diǎn)(﹣3,5) | 當(dāng)x=﹣3時(shí),y=5 |
② | 函數(shù)圖象的最低點(diǎn)是(1,1) |
|
(4)當(dāng)2<y≤4時(shí),x的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名射擊選手中選出一名選手參加省級(jí)比賽,現(xiàn)對(duì)他們分別進(jìn)行5次射擊測(cè)試,成績(jī)分別為(單位:環(huán))
甲:5、6、7、9、8
乙:8、4、8、6、9
(1)分別計(jì)算這兩組數(shù)據(jù)的平均數(shù)和方差;
(2)根據(jù)測(cè)試成績(jī),你認(rèn)為選派哪一名選手參賽更好些?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為宣傳6月6日世界海洋日,某校八年級(jí)舉行了主題為“珍惜海洋資源,保護(hù)海洋生物多樣性”的知識(shí)競(jìng)賽活動(dòng).為了解全年級(jí)500名學(xué)生此次競(jìng)賽成績(jī)(百分制)的情況,隨機(jī)抽取了部分參賽學(xué)生的成績(jī),整理并繪制出如下不完整的統(tǒng)計(jì)表(表1)和統(tǒng)計(jì)圖(如圖).請(qǐng)根據(jù)圖表信息解答以下問題:
(1)本次調(diào)查一共隨機(jī)抽取了個(gè)參賽學(xué)生的成績(jī);
(2)表1中a= ;
(3)所抽取的參賽學(xué)生的成績(jī)的中位數(shù)落在的“組別”是 ;
(4)請(qǐng)你估計(jì),該校九年級(jí)競(jìng)賽成績(jī)達(dá)到90分以上(含90分)的學(xué)生約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜店第一次用400元購(gòu)進(jìn)某種蔬菜,由于銷售狀況良好,該店又用700元第二次購(gòu)進(jìn)該品種蔬菜,所購(gòu)數(shù)量是第一次購(gòu)進(jìn)數(shù)量的2倍,但進(jìn)貨價(jià)每千克少了0.5元.
(1)第一次所購(gòu)該蔬菜的進(jìn)貨價(jià)是每千克多少元?
(2)蔬菜店在銷售中,如果兩次售價(jià)均相同,第一次購(gòu)進(jìn)的蔬菜有2% 的損耗,第二次購(gòu)進(jìn)的蔬菜有3% 的損耗,若該蔬菜店售完這些蔬菜獲利不低于944元,則該蔬菜每千克售價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的一次函數(shù),當(dāng)x=1時(shí),y=1;當(dāng)x=-2時(shí),y=-14.
(1)求這個(gè)一次函數(shù)的關(guān)系式;
(2)在如圖所示的平面直角坐標(biāo)系中作出函數(shù)的圖像;
(3)由圖像觀察,當(dāng)0≤x≤2時(shí),函數(shù)y的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com