【題目】已知△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E.
(1)當∠BAC為銳角時,如圖①,求證:∠CBE=∠BAC;
(2)當∠BAC為鈍角時,如圖②,CA的延長線與⊙O相交于點E,(1)中的結(jié)論是否仍然成立?并說明理由.
【答案】(1)詳見解析;(2)成立,理由詳見解析.
【解析】
(1)連接AD,根據(jù)直徑所對的圓周角是直角,得AD⊥BC,又由AB=AC,根據(jù)等腰三角形的三線合一,得AD平分∠BAC,結(jié)合圓周角定理,即可得∠BAC=2∠CBE;
(2)連接AD.根據(jù)等腰三角形的三線合一和圓內(nèi)接四邊形的性質(zhì),即可證明∠BAC=2∠CBE.
(1)證明:如圖①連結(jié)AD
∵AB是⊙O的直徑
∴AD⊥BC
∵AB=AC
∴∠CAD= ,
又∵BE⊥AC,
∴∠CAD=∠CBE,
∴∠CBE=;
(2)解:成立,理由如下:如圖②連結(jié)AD,
∵AB是⊙O的直徑,
∴AD⊥BC,
∵AB=AC,
∴∠CAD=,
∵∠CAD+∠EAD=180°,∠CBE+∠EAD=180°,
∠CAD=∠CBE,
∴∠CBE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC與Rt△ECD中,∠ACB=∠ECD=90°,CD為Rt△ABC斜邊上的中線,且ED∥BC.
(1)求證:△ABC∽△EDC;
(2)若CE=3,CD=4,求CB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點F是DA延長線的一點,AC平分∠FAB交⊙O于點C,過點C作CE⊥DF,垂足為點E.
(1)求證:CE是⊙O的切線;
(2)若AE=1,CE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從、兩地同時相向勻速行駛,當乙車到達地后,繼續(xù)保持原速向遠離的方向行駛,而甲車到達地后,休息半小時后立即掉頭,并以原速的倍與乙車同向行駛,經(jīng)過一段時間后,兩車先后到達距地的地并停下來,設(shè)兩車行駛的時間為,兩車之間的距離為,與的函數(shù)關(guān)系如圖,則當甲車從地掉頭追到乙車時,乙車距離地__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB 為半⊙O 的直徑,弦 AC 的延長線與過點 B 的切線交于點 D,E 為 BD的中點,連接 CE.
(1)求證:CE 為 O 的切線;
(2)過點 C 作 CF AB ,垂足為點 F,AC=5,CF=3,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,⊙O為內(nèi)切圓,E為切點.
(1)求證:AO2=AEAD;
(2)若AO=4cm,AD=5cm,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABCD的頂點A、B、D的坐標分別為(0,5)、(0,2)、(4,5),直線l的解析式為y=kx+2﹣4k(k>0).
(1)當直線l經(jīng)過原點O時,求一次函數(shù)的解析式;
(2)通過計算說明:不論k為何值,直線l總經(jīng)過點C;
(3)在(1)的條件下,點M為直線l上的點,平面內(nèi)是否存在x軸上方的點N,使以點O、A、M、N為頂點的四邊形是菱形?若存在,請直接寫出點M的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】田忌賽馬是一個為人熟知的故事.傳說戰(zhàn)國時期,齊王與田忌各有上、中、下三匹馬,同等級的馬中,齊王的馬比田忌的馬強.有一天,齊王要與田忌賽馬,雙方約定:比賽三局,每局各出-匹,每匹馬賽一次,贏得兩局者為勝.看樣子田忌似乎沒有什么勝的希望,但是田忌的謀士了解到主人的上、中等馬分別比齊王的中、下等馬要強.
(1)如果齊王將馬按下中上的順序出陣比賽,那么田忌的馬如何出陣才能獲勝?
(2)如果齊王將馬按下中上的順序出陣,而田忌的馬隨機出陣比賽,田忌獲勝的概率是多少?(要求寫出雙方對陣的所有情況)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com