如圖,二次函數(shù)y=ax2+bx(a<0)的圖象過坐標原點O,與x軸的負半軸交于點A,過A點的直線與y軸交于B,與二次函數(shù)的圖象交于另一點C,且C點的橫坐標為﹣1,AC:BC=3:1.
(1)求點A的坐標;
(2)設(shè)二次函數(shù)圖象的頂點為F,其對稱軸與直線AB及x軸分別交于點D和點E,若△FCD與△AED相似,求此二次函數(shù)的關(guān)系式.
(1)(﹣4,0);(2)y=﹣x2﹣4x.
解析試題分析:(1)過點C作CM∥OA交y軸于M,則△BCM∽△BAO,根據(jù)相似三角形對應(yīng)邊成比例得出,即OA=4CM=4,由此得出點A的坐標為(﹣4,0).
(2)先將A(﹣4,0)代入y=ax2+bx,化簡得出b=4a,即y=ax2+4ax,則頂點F(﹣2,﹣4a),設(shè)直線AB的解析式為y=kx+n,將A(﹣4,0)代入,化簡得n=4k,即直線AB的解析式為y=kx+4k,則B點(0,4k),D(﹣2,2k),C(﹣1,3k).由C(﹣1,3k)在拋物線y=ax2+4ax上,得出3k=a﹣4a,化簡得到k=﹣a.再由△FCD與直角△AED相似,則△FCD是直角三角形,又∠FDC=∠ADE<90°,∠CFD<90°,得出∠FCD=90°,△FCD∽△AED.再根據(jù)兩點之間的距離公式得出FC2=CD2=1+a2,得出△FCD是等腰直角三角形,則△AED也是等腰直角三角形,所以∠DAE=45°,由三角形內(nèi)角和定理求出∠OBA=45°,那么OB=OA=4,即4k=4,求出k=1,a=﹣1,進而得到此二次函數(shù)的關(guān)系式為y=﹣x2﹣4x.
試題解析:解:(1)如答圖,過點C作CM∥OA交y軸于M.
∵AC:BC=3:1,∴.
∵CM∥OA,∴△BCM∽△BAO.∴.
∵C點的橫坐標為﹣1,∴CM=1.∴OA=4CM=4.
∴點A的坐標為(﹣4,0).
(2)∵二次函數(shù)y=ax2+bx(a<0)的圖象過A點(﹣4,0),
∴16a﹣4b=0.∴b=4a.
∴y=ax2+4ax,對稱軸為直線x=﹣2,F(xiàn)點坐標為(﹣2,﹣4a).
設(shè)直線AB的解析式為y=kx+n,將A(﹣4,0)代入,得﹣4k+n=0,∴n=4k.
∴直線AB的解析式為y=kx+4k.
∴B點坐標為(0,4k),D點坐標為(﹣2,2k),C點坐標為(﹣1,3k).
∵C(﹣1,3k)在拋物線y=ax2+4ax上,∴3k=a﹣4a,∴k=﹣a.
∵△AED中,∠AED=90°,
∴若△FCD與△AED相似,則△FCD是直角三角形.
∵∠FDC=∠ADE<90°,∠CFD<90°,∴∠FCD=90°.
∴△FCD∽△AED.
∵F(﹣2,﹣4a),C(﹣1,3k),D(﹣2,2k),k=﹣a,
∴FC2=(﹣1+2)2+(3k+4a)2=1+a2,CD2=(﹣2+1)2+(2k﹣3k)2=1+a2.
∴FC=CD.∴△FCD是等腰直角三角形.∴△AED是等腰直角三角形.
∴∠DAE=45°.∴∠OBA=45°.∴OB=OA=4.
∴4k=4.∴k=1.∴a=﹣1.
∴此二次函數(shù)的關(guān)系式為y=﹣x2﹣4x.
考點:1.二次函數(shù)綜合題;2.曲線上點的坐標與方程的關(guān)系;3.待定系數(shù)法的應(yīng)用;4.二次函數(shù)的性質(zhì);5.相似三角形的判定和性質(zhì);6.等腰直角三角形的判定和性質(zhì).
科目:初中數(shù)學 來源: 題型:解答題
如圖1,矩形OABC頂點B的坐標為(8,3),定點D的坐標為(12,0),動點P從點O出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,動點Q從點D出發(fā),以每秒1個單位長度的速度沿x軸的負方向勻速運動,PQ兩點同時運動,相遇時停止.在運動過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運動時間為t秒.
(1)當t= 時,△PQR的邊QR經(jīng)過點B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過定點E(5,0)作EF⊥BC,垂足為F,當△PQR的頂點R落在矩形OABC的內(nèi)部時,過點R作x軸、y軸的平行線,分別交EF、BC于點M、N,若∠MAN=45°,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知直線與x軸交于點A,與y軸交于點C,拋物線經(jīng)過點A和點C,對稱軸為直線l:,該拋物線與x軸的另一個交點為B.
(1)求此拋物線的解析式;
(2)點P在直線l上,求出使△PAC的周長最小的點P的坐標;
(3)點M在此拋物線上,點N在y軸上,以A、B、M、N為頂點的四邊形能否為平行四邊形?若能,直接寫出所有滿足要求的點M的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知在平面直角坐標系xOy中,拋物線與x軸交于點A、B(點A在點B右側(cè)),與y軸交于點C(0,-3),且OA=2OC.
(1)求這條拋物線的表達式及頂點M的坐標;
(2)求的值;
(3)如果點D在這條拋物線的對稱軸上,且∠CAD=45º,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知拋物線y=x2﹣(k+2)x+和直線y=(k+1)x+(k+1)2.
(1)求證:無論k取何實數(shù)值,拋物線總與x軸有兩個不同的交點;
(2)拋物線于x軸交于點A、B,直線與x軸交于點C,設(shè)A、B、C三點的橫坐標分別是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果拋物線與x軸的交點A、B在原點的右邊,直線與x軸的交點C在原點的左邊,又拋物線、直線分別交y軸于點D、E,直線AD交直線CE于點G(如圖),且CA•GE=CG•AB,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連結(jié)AB、AE、BE.已知tan∠CBE=,A(3,0),D(-1,0),E(0,3).
(1)求拋物線的解析式及頂點B的坐標;
(2)求證:CB是△ABE外接圓的切線;
(3)試探究坐標軸上是否存在一點P,使以D、E、P為頂點的三角形與△ABE相似,若存在,直接寫出點P的坐標;若不存在,請說明理由;
(4)設(shè)△AOE沿x軸正方向平移t個單位長度(0<t≤3)時,△AOE與△ABE重疊部分的面積為s,求s與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點的坐標是(8,6).
(1)求二次函數(shù)的解析式.
(2)求函數(shù)圖象的頂點坐標及D點的坐標.
(3)該二次函數(shù)的對稱軸交x軸于C點.連接BC,并延長BC交拋物線于E點,連接BD,DE,求△BDE的面積.
(4)拋物線上有一個動點P,與A,D兩點構(gòu)成△ADP,是否存在S△ADP=S△BCD?若存在,請求出P點的坐標;若不存在.請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,矩形OABC在平面直角坐標系xoy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O、A兩點,直線AC交拋物線于點D。
(1)求拋物線的解析式;
(2)求點D的坐標;
(3)若點M在拋物線上,點N在x軸上,是否存在以點A、D、M、N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com