【題目】如圖,已知AB∥CD,AC∥BD,CE平分∠ACD.
(1)求證:△ACE是等腰三角形;
(2)求證:∠BEC>∠BDC.
【答案】(1)證明見解析;(2)證明見解析
【解析】分析:(1)根據(jù)AB∥CD,得∠AEC=∠ECD,再根據(jù)角平分線的定義得出∠ACE=∠ECD,從而得出∠AEC=∠ECA,根據(jù)等角對等邊,得出AC=AE;
(2)先判斷ABDC為平行四邊形,根據(jù)平行四邊形的性質(zhì)得出∠CAE=∠BDC,再根據(jù)外角的性質(zhì)得出∠BEC>∠BDC.
本題解析:
(1)∵AB∥CD,
∴∠AEC=∠ECD,
∵CE平分∠ACD,
∴∠ACE=∠ECD,
∴∠AEC=∠ECA,
∴AC=AE,
∴△ACE是等腰三角形;
(2)∵AB∥CD,AC∥BD,
∴四邊形ABDC為平行四邊形,
∴∠CAE=∠BDC,
∵∠BEC>∠CAE,
∴∠BEC>∠BDC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),∠DOE=90°,OD是∠AOC的角平分線,若∠AOC=70°.
(1)求∠BOD的度數(shù).
(2)試判斷OE是否平分∠BOC,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)如圖,已知,∠AEF=∠ACD,∠1=∠2,求證:DE∥BC.(要求:不寫根據(jù))
(2)∠1=∠C,∠B=∠D,求證:∠3=∠2.(要求:不寫根據(jù);不許用三角形的內(nèi)角和定理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛摩托車同時從相距20km的A,B兩地出發(fā),相向而行.圖中l(wèi)1,l2分別表示甲、乙兩輛摩托車到A地的距離s(km)與行駛時間t(h)的函數(shù)關(guān)系.則下列說法錯誤的是( )
A.乙摩托車的速度較快
B.經(jīng)過0.3小時甲摩托車行駛到A,B兩地的中點(diǎn)
C.經(jīng)過0.25小時兩摩托車相遇
D.當(dāng)乙摩托車到達(dá)A地時,甲摩托車距離A地km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB于點(diǎn)D,CE是∠ACB的平分線,∠A=20°,∠B=60°,求∠BCD和∠ECD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水平放置的容器內(nèi)原有210 mm高的水,如圖,將若干個球逐一放入該容器中,每放入一個大球水面就上升4 mm,每放入一個小球水面就上升3 mm,假定放入容器中的所有球完全浸沒水中且水不溢出.設(shè)水面高為y(mm).
(1)若只放入大球,且個數(shù)為x大,求y關(guān)于x大的函數(shù)表達(dá)式(不必寫出x大的取值范圍).
(2)若放入6個大球后,開始放入小球,且小球個數(shù)為x小.
①求y關(guān)于x小的函數(shù)表達(dá)式(不必寫出x小的取值范圍).
②若限定水面高不超過260 mm,則最多能放入幾個小球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次軍事演習(xí)中,藍(lán)方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進(jìn)實(shí)施攔截,紅方行駛1000米到達(dá)C處后,因前方無法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進(jìn)了相同的距離,剛好在D處成功攔截藍(lán)方,求攔截點(diǎn)D處到公路的距離(結(jié)果不取近似值).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com