【題目】如圖是用棋子擺成的“上”字.

(1)依照此規(guī)律,第4個圖形需要黑子、白子各多少枚?

(2)按照這樣的規(guī)律擺下去,擺成第n個“上”字需要黑子、白子各多少枚?

(3)請?zhí)骄康趲讉“上”字圖形白子總數(shù)比黑子總數(shù)多15枚.

【答案】(1)黑子5枚,白子14;(2)黑子(n+1)枚,白子(3n+2);(3)7.

【解析】

(1)根據(jù)已知得出黑棋子的變化規(guī)律為2,3,4…,白棋子為5,8,11…即可得出規(guī)律;

(2)用(1)中數(shù)據(jù)可以得出變化規(guī)律,擺成第n個“上”字需要黑子 n+1 個,白子3n+2

(3)設第n個“上”字圖形白子總數(shù)比黑子總數(shù)多15個,進而得出3n+2=(n+1)+15,求出即可.

解:(1)依照此規(guī)律,第4個圖形需要黑子5枚,白子14.

(2)按照這樣的規(guī)律擺下去,擺成第n字需要黑子(n+1)枚,白子(3n+2).

(3)設第m字圖形白子總數(shù)比黑子總數(shù)多15枚,

3m+2=m+1+15,

解得m=7.

所以第7字圖形白子總數(shù)比黑子總數(shù)多15.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度數(shù);

(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)

(3)從(1)(2)的結果中能看出∠AOE和∠BOD有何關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程(1﹣2k)x2﹣2x﹣1=0

(1)若此方程為一元一次方程,求k的值.

(2)若此方程為一元二次方程,且有實數(shù)根,試求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學生書寫漢字的能力.增強保護漢字的意識,我區(qū)舉辦了漢字聽寫大賽,經(jīng)選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x

頻數(shù)(人數(shù)

1

25≤x<30

4

2

30≤x<35

6

3

35≤x<40

14

4

40≤x<45

a

5

45≤x<50

10

請結合圖表完成下列各題:

(1)求表中a的值;

(2)請把頻數(shù)分布直方圖補充完整;

(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察、猜想、探究:

在△ABC中,

(1)如圖①,當,AD為∠BAC的角平分線時,求證:

(2)如圖②,當,AD為∠BAC的角平分線時,線段AB、AC、CD又有怎樣的

數(shù)量關系?請寫出你的猜想,并對你的猜想給予證明;

(3)如圖③,當AD為△ABC的外角平分線時,線段AB、AC、CD又有怎樣的數(shù)量關系?不需要證明,請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由拋物線AED和矩形ABCD構成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系(如圖1),y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.

(1)求拋物線的解析式;
(2)現(xiàn)有一輛貨運卡車,高4.4m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內設雙向道(如圖2),為了安全起見,在隧道正中間設有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面內,△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點旋轉180°得到△CEA,將△ABD繞著邊AD的中點旋轉180°得到△DFA,如圖②,請完成下列問題:

(1)試猜想四邊形ABDF是什么特殊四邊形,并說明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正比例函數(shù)圖象經(jīng)過點(-1,2).

(1)求此正比例函數(shù)的表達式;

(2)畫出這個函數(shù)圖象;

(3)(2,-5)是否在此函數(shù)圖象上?

(4)若這個圖象還經(jīng)過點A(a,8),求點A的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,RtABC中,∠ABC=90°,BCAB2BC.在AB邊上取一點M,使AM=BC,過點AAEABAE=BM,連接EC,再過點AANEC,交直線CMCB于點F、N

1)證明:∠AFM=45°

2)若將題中的條件“BCAB2BC”改為“AB2BC”,其他條件不變,請你在圖2的位置上畫出圖形,(1)中的結論是否仍然成立?如果成立,請說明理由;如果不成立,請猜想∠AFM的度數(shù),并說明理由.

查看答案和解析>>

同步練習冊答案