【題目】如圖1,在RtABC中,∠C90°ACBC6cm,動點(diǎn)P從點(diǎn)C出發(fā)以1cm/s的速度沿CA勻速運(yùn)動,同時(shí)動點(diǎn)Q從點(diǎn)A出發(fā)以cm/s的速度沿AB勻速運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動,設(shè)運(yùn)動時(shí)間為ts

1)當(dāng)t3時(shí),線段PQ的長為   cm;

2)是否存在某一時(shí)刻t,使點(diǎn)B在線段PQ的垂直平分線上?若存在,求出t的值;若不存在,請說明理由;

3)如圖2,以PC為邊,往CB方向作正方形CPMN,設(shè)四邊形CPMNRtABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式.

【答案】13;(2)存在,理由見解析, t=(126s;(3St20t≤3)或S=﹣t2+12t183t≤6

【解析】

1)由題意得:當(dāng)t3時(shí),PC3AC,AQ3AB,即P、Q分別為AC、AB的中點(diǎn),得出PQABC的中位線,得出PQBC3即可;

2)由勾股定理得出方程,解方程即可;

3)分兩種情況,由正方形面積公式和三角形面積公式,即可得出答案.

1)∵∠C90°,ACBC6,

AB6,

當(dāng)t3時(shí),PC3ACAQ3AB,

PQ分別為AC、AB的中點(diǎn),

PQABC的中位線,

PQBC3cm);

故答案為:3;

2)存在.理由如下:

連接BP.如圖1

RtACB中,∵ACBC6,∠C90°,

AB6,

若點(diǎn)B在線段PQ的垂直平分線上,

BPBQ,

AQt,CPt,

BQ6t,

PB262+t2,

∴(6t262+t2

整理得:t224t+360,

解得:t126t12+6(舍去),

t=(126s時(shí),點(diǎn)B在線段PQ的垂直平分線上.

3)分兩種情況:

①當(dāng)0t≤3時(shí),如圖2

S=正方形CPMN的面積=t2;

②當(dāng)3t≤6時(shí),如圖3

PCt,AC6,

AP6t

∵∠C=∠APM=∠M90°,∠A=∠EFM45°

∴△APE∽△FME∽△ACB,并且都是等腰直角三角形

PEAP6t,

EMFMt﹣(6t)=2t6,

SS正方形CPMNSRtEFM t22t62=﹣t2+12t18;

綜上所述,S關(guān)于t的函數(shù)關(guān)系式為:St20t≤3)或S=﹣t2+12t183t≤6).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從共享單車、共享汽車等共享出行到共享充電寶、共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個(gè)領(lǐng)域迅速普及應(yīng)用,越來越多的企業(yè)與個(gè)人成為參與者與受益者,小宇上網(wǎng)查閱了相關(guān)資料,順便收集到四個(gè)共享經(jīng)濟(jì)領(lǐng)域的圖標(biāo),并將其制成編號為A,B,C,D的四張卡片(除編號和內(nèi)容外,其余完全相同),將這四張卡片背面朝上,洗勻放好.

1)從中隨機(jī)抽取一張,求剛好抽到“共享服務(wù)”的概率.

2)從中隨機(jī)抽取一張(不放回),再從中隨機(jī)抽取一張,請用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識”的概率(這四張卡片分別用它們的編號AB,C,D表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰和小明沿同一條路同時(shí)從學(xué)校出發(fā)到某超市購物,學(xué)校與超市的路程是4千米.小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)超市.圖中折線OABC和線段OD分別表示兩人離學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:

1)小聰在超市購物的時(shí)間為   分鐘,小聰返回學(xué)校的速度為    千米/分鐘;

2)請你求出小明離開學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)關(guān)系式;

3)當(dāng)小聰與小明迎面相遇時(shí),他們離學(xué)校的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果公司購進(jìn)10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機(jī)抽取若干進(jìn)行統(tǒng)計(jì),部分結(jié)果如下表:

蘋果總質(zhì)量n(kg)

100

200

300

400

500

1000

損壞蘋果質(zhì)量m(kg)

10.50

19.42

30.63

39.24

49.54

101.10

蘋果損壞的頻率

(結(jié)果保留小數(shù)點(diǎn)后三位)

0.105

0.097

0.102

0.098

0.099

0.101

估計(jì)這批蘋果損壞的概率為_____(結(jié)果保留小數(shù)點(diǎn)后一位),損壞的蘋果約有______kg.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已如拋物線yax2+bx+c與直線ymx+n相交于兩點(diǎn),這兩點(diǎn)的坐標(biāo)分別是(0,﹣)和(mbm2mb+n),其中a,bc,m,n為實(shí)數(shù),且a,m不為0

1)求c的值;

2)求證:拋物線yax2+bx+cx軸有兩個(gè)交點(diǎn);

3)當(dāng)﹣1≤x≤1時(shí),設(shè)拋物線yax2+bx+cx軸距離最大的點(diǎn)為Px0,y0),求這時(shí)|y0|的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax22ax+a0)與y軸交于點(diǎn)A,過點(diǎn)Ax軸的平行線交拋物線于點(diǎn)MP為拋物線的頂點(diǎn).若直線OP交直線AM于點(diǎn)B,且M為線段AB的中點(diǎn),則a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為20元/千克,售價(jià)不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價(jià)x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.

銷售量y(千克)

34.8

32

29.6

28

售價(jià)x(元/千克)

22.6

24

25.2

26

(1)某天這種水果的售價(jià)為23.5元/千克,求當(dāng)天該水果的銷售量.

(2)如果某天銷售這種水果獲利150元,那么該天水果的售價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+cx軸交于A(﹣2,0),B8,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC2OA,拋物線的對稱軸x軸交于點(diǎn)D

1)求拋物線的解析式;

2)點(diǎn)P是第一象限內(nèi)拋物線上位于對稱軸右側(cè)的一個(gè)動點(diǎn),設(shè)點(diǎn)P點(diǎn)的橫坐標(biāo)為m,且SCDPSABC,求m的值;

3K是拋物線上一個(gè)動點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)H,使B、C、K、H為頂點(diǎn)的四邊形成為矩形?若存在,直接寫出點(diǎn)H的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,C⊙O上一點(diǎn),經(jīng)過點(diǎn)C的切線交AB的延長線于點(diǎn)E , EC的延長線于點(diǎn)D,連接AC .

(1)求證: AC平分∠DAE ;

(2),求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案