【題目】已知,在△ABC中,∠ABC=90°,AB=4,BC=3,若線段CD=2,且CD∥AB,則AD的長(zhǎng)度等于 .
【答案】 或3
【解析】解:分兩種情況: ①如圖1所示:
延長(zhǎng)BC、AD交于點(diǎn)M,
∵CD∥AB,
∴△DCM∽△ABN,
∴ = = ,
∴CN=BC=3,AD═ AN,
∴BN=6,
∵∠ABC=90°,
∴AN= = =2 ,
∴AD= ;
②如圖2所示:
設(shè)AD交BC于O,
∵CD∥AB,∠ABC=90°,
∴△COD∽△BOA,
∴ = ,
∵BC=3,
∴OC=1,OB=2,
∴OD= = ,OA= =2 ,
∴AD=OA+OD=3 ;
綜上所述:AD的長(zhǎng)度等于 或3 ;
所以答案是: 或3 .
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對(duì)于下列各值:
①線段MN的長(zhǎng);
②△PAB的周長(zhǎng);
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大小.
其中會(huì)隨點(diǎn)P的移動(dòng)而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120度時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國(guó)際合作高峰論壇在北京舉行,本屆論壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國(guó)家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)物學(xué)家通過大量的調(diào)查估計(jì)出,某種動(dòng)物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動(dòng)物活到25歲的概率為多少?現(xiàn)年25歲的這種動(dòng)物活到30歲的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結(jié)論有 .(把你認(rèn)為正確的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC=4cm,把它沿對(duì)角線AC方向平移1cm得到菱形EFGH,則圖中陰影部分圖形的面積與四邊形EMCN的面積之比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC、BD是它的對(duì)角線,∠ABC=∠ADC=90°,∠BCD是銳角.
(1)寫出這個(gè)四邊形的一條性質(zhì)并證明你的結(jié)論.
(2)若BD=BC,證明: .
(3)①若AB=BC=4,AD+DC=6,求 的值.
②若BD=CD,AB=6,BC=8,求sin∠BCD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著裕安中學(xué)的規(guī)模逐漸擴(kuò)大,學(xué)生人數(shù)越來越多,學(xué)校打算購(gòu)買校車20輛,現(xiàn)有A和B兩種型號(hào)校車,如果購(gòu)買A型號(hào)校車6輛,B型號(hào)14輛,需要資金580萬元;如果購(gòu)買A型號(hào)校車12輛,B型號(hào)校車8輛,需要資金760萬元.已知每種型號(hào)校車的座位數(shù)如表所示:
A型號(hào) | B型號(hào) | |
座位數(shù)(個(gè)/輛) | 60 | 30 |
經(jīng)預(yù)算,學(xué)校準(zhǔn)備購(gòu)買設(shè)備的資金不高于500萬元.(每種型號(hào)至少購(gòu)買1輛)
(1)每輛A型校車和B型校車各多少萬元?
(2)請(qǐng)問學(xué)校有幾種購(gòu)買方案?且哪種方案的座位數(shù)最多,是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com