【題目】如圖,BD是矩形ABCD的一條對(duì)角線.

(1)作BD的垂直平分線EF,分別交AD、BC于點(diǎn)E、F,垂足為點(diǎn)O(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

(2)求證:AF=CE.

【答案】見解析

【解析】

(1)利用基本作圖作線段BD的垂直平分線即可;

(2)先證明DOE≌△BOF得到DE=BF,然后證明四邊形AECF為平行四邊形,從而得到AF=CE.

(1)解:如圖,EF為所作;

(2)證明:∵四邊形ABCD為平行四邊形,

AD=BC,ADBC,

∴∠ADB=CBD,

EF垂直平分BD,

BO=OD,

DOEBOF

,

∴△DOE≌△BOF,

DE=BF,

AE=CF,

AECF,

∴四邊形AECF為平行四邊形,

AF=CE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________

(2)應(yīng)用:已知正方形ABCD的邊長為4,點(diǎn)PAD邊上的一點(diǎn),AP= ,請(qǐng)利用“兩點(diǎn)之間線段最短”這一原理,在線段AC上畫出一點(diǎn)M,使MP+MD最小,并直接寫出最小值的平方為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為x= ,且經(jīng)過點(diǎn)(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點(diǎn),則y1=y2 . 上述說法正確的是(
A.①②④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為10的正方形ABCD中,△PAQ是正三角形,求PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】田忌賽馬的故事為我們熟知.小亮與小齊學(xué)習(xí)概率初步知識(shí)后設(shè)計(jì)了如下游戲:小亮手中有方塊10、8、6三張撲克牌,小齊手中有方塊9、7、5三張撲克牌.每人從各自手中取出一張牌進(jìn)行比較,數(shù)字大的為本“局”獲勝,每次取得牌不能放回.
(1)若每人隨機(jī)取手中的一張牌進(jìn)行比賽,求小齊本“局”獲勝的概率;
(2)若比賽采用三局兩勝制,即勝2局或3局者為本次比賽獲勝者.當(dāng)小亮的三張牌出牌順序?yàn)橄瘸?,再出8,最后出10時(shí),小齊隨機(jī)出牌應(yīng)對(duì),求小齊本次比賽獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示平面內(nèi),有一靠在墻面上的梯子AB(粗細(xì)忽略不計(jì)),因外界因素導(dǎo)致梯子底端A持續(xù)向右滑動(dòng),直至整架梯子完全滑落到地面(即B與O重合),設(shè)A向右滑動(dòng)的距離為x(cm),梯子的中點(diǎn)M與墻角O之間的距離為y(cm),則在整個(gè)滑動(dòng)過程中,y與x的關(guān)系大致可表達(dá)為下列圖象中的(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點(diǎn)E,F(xiàn)分別在邊AB,BC上,沿直線EF將△EBF翻折,使頂點(diǎn)B的對(duì)應(yīng)點(diǎn)B1落在AC邊上,且EB1⊥AC.求證:四邊形BFB1E是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一條長為18cm的細(xì)繩圍成一個(gè)等腰三角形.

(1)如果腰長是底邊長的2倍,求三角形各邊的長;

(2)能圍成有一邊的長是4cm的等腰三角形嗎?若能,求出其他兩邊的長;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投資新建了一商場(chǎng),共有商鋪30間.據(jù)預(yù)測(cè),當(dāng)每間的年租金定為10萬元時(shí),可全部租出.每間的年租金每增加5000元,少租出商鋪1間.該公司要為租出的商鋪每間每年交各種費(fèi)用1萬元,未租出的商鋪每間每年交各種費(fèi)用5000元.
(1)當(dāng)每間商鋪的年租金定為13萬元時(shí),能租出多少間?
(2)當(dāng)每間商鋪的年租金定為多少萬元時(shí),該公司的年收益(收益=租金﹣各種費(fèi)用)為275萬元?

查看答案和解析>>

同步練習(xí)冊(cè)答案