【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,分別過(guò)點(diǎn)A,C作AE∥DC,CE∥AB,兩線交于點(diǎn)E.
(1)求證:四邊形AECD是菱形;
(2)如果∠B=60°,BC=2,求四邊形AECD的面積.
【答案】(1)證明見(jiàn)解析;(2)2.
【解析】
(1)直接利用平行四邊形的判定方法得出四邊形AECD是平行四邊形,再利用直角三角形的性質(zhì)得出CD=AD,即可得出四邊形AECD是菱形;
(2)利用菱形的性質(zhì)和平行四邊形的性質(zhì)得出AC,ED的長(zhǎng),進(jìn)而得出菱形面積.
(1)證明:∵AE∥DC,CE∥AB,
∴四邊形AECD是平行四邊形,
∵Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,
∴CD=AD,
∴四邊形AECD是菱形;
(2)解:連接DE.
∵∠ACB=90°,∠B=60°,
∴∠BAC=30°
∴AB=4,AC=2,
∵四邊形AECD是菱形,
∴EC=AD=DB,
又∵EC∥DB
∴四邊形ECBD是平行四邊形,
∴ED=CB=2,
∴S菱形AECD=×AC×ED=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問(wèn)總共需投入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)坐標(biāo)分別為A(2,3)、B (1,1)、C(2,1)
(1)畫(huà)出關(guān)于軸對(duì)稱的,并寫(xiě)出點(diǎn)的坐標(biāo)為_________
(2)將向左平移4個(gè)單位長(zhǎng)度得到,直接寫(xiě)出點(diǎn)的坐標(biāo)為_________
(3)直接寫(xiě)出點(diǎn)B關(guān)于直線n(直線n上各點(diǎn)的縱坐標(biāo)都為-1)對(duì)稱點(diǎn)B'的坐標(biāo)為________
(4)在軸上找一點(diǎn)P,使PA+PB的值最小,標(biāo)出P點(diǎn)的位置(保留畫(huà)圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:∠EAF=15°,AB=BC=CD=DE=EF,則∠DEF等于( )
A.60°B.75°C.70°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,等腰Rt△ABC,等腰Rt△ADE,AB⊥AC,AD⊥AE,AB=AC,AD=AE,CD交AE、BE分別于點(diǎn)M、F.
(1)求證:△DAC≌△EAB.
(2)求證:CD⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,完成下列推理過(guò)程:
如圖所示,點(diǎn)E在△ABC外部,點(diǎn)D在BC邊上,DE交AC于F,若∠1=∠3,∠E=∠C,AE=AC,求證:△ABC≌△ADE.
證明:∵ ∠E=∠C(已知),
∠AFE=∠DFC(_________________),
∴∠2=∠3(______________________),
又∵∠1=∠3(_________________),
∴ ∠1=∠2(等量代換),
∴__________+∠DAC= __________+∠DAC(______________________),
即∠BAC =∠DAE,
在△ABC和△ADE中
∵
∴△ABC≌△ADE(_________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C、E分別在直線AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他沒(méi)有帶量角器,只帶了一副三角板,于是他想了這樣一個(gè)辦法:首先連結(jié)CF,再找出CF的中點(diǎn)O,然后連結(jié)EO并延長(zhǎng)EO和直線AB相交于點(diǎn)B,經(jīng)過(guò)測(cè)量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BC=EF.小華的想法對(duì)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)在圖中畫(huà)出與△ABC關(guān)于直線l成軸對(duì)稱的△AB′C′;
(2)在直線l上找一點(diǎn)P,使PB′+PC的長(zhǎng)最短;
(3)若△ACM是以AC為腰的等腰三角形,點(diǎn)M在小正方形的頂點(diǎn)上.這樣的點(diǎn)M共有 個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com