(2006•河北)若△ABC的周長為20cm,點(diǎn)D,E,F(xiàn)分別是△ABC三邊的中點(diǎn),則△DEF的周長為( )
A.5cm
B.10cm
C.15cm
D.cm
【答案】分析:利用三角形的中位線性質(zhì)得到所求三角形的三邊與原三角形的周長之間的關(guān)系,進(jìn)而求解.
解答:解:∵點(diǎn)D,E,F(xiàn)分別是△ABC三邊的中點(diǎn),
∴DE、EF、DF分別等于△ABC三邊的一半,
∴DE+EF+DF=△ABC的周長=10 cm.
故選B.
點(diǎn)評:本題考查了三角形的中位線定理,三角形的三條中位線把原三角形分成可重合的4個(gè)小三角形,因而每個(gè)小三角形的周長為原三角形周長的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2006•河北)探索:
在如圖1至圖3中,△ABC的面積為a.

(1)如圖1,延長△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
a
a
(用含a的代數(shù)式表示);
(2)如圖2,延長△ABC的邊BC到點(diǎn)D,延長邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
2a
2a
(用含a的代數(shù)式表示);
(3)在圖2的基礎(chǔ)上延長AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3).若陰影部分的面積為S3,則S3=
6a
6a
(用含a的代數(shù)式表示).
發(fā)現(xiàn):
像上面那樣,將△ABC各邊均順次延長一倍,連接所得端點(diǎn),得到△DEF(如圖3),此時(shí),我們稱△ABC向外擴(kuò)展了一次.可以發(fā)現(xiàn),擴(kuò)展一次后得到的△DEF的面積是原來△ABC面積的
7
7
倍.
應(yīng)用:
去年在面積為10m2的△ABC空地上栽種了某種花卉.今年準(zhǔn)備擴(kuò)大種植規(guī)模,把△ABC向外進(jìn)行兩次擴(kuò)展,第一次由△ABC擴(kuò)展成△DEF,第二次由△DEF擴(kuò)展成△MGH(如圖4).則這兩次擴(kuò)展的區(qū)域(即陰影部分)面積共為
480
480
m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(01)(解析版) 題型:選擇題

(2006•河北)在平面直角坐標(biāo)系中,若點(diǎn)P(x-2,x)在第二象限,則x的取值范圍為( )
A.0<x<2
B.x<2
C.x>0
D.x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(49)(解析版) 題型:解答題

(2006•河北)如圖,在Rt△ABC中,∠C=90°,AC=12,BC=16,動點(diǎn)P從點(diǎn)A出發(fā)沿AC邊向點(diǎn)C以每秒3個(gè)單位長的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C出發(fā)沿CB邊向點(diǎn)B以每秒4個(gè)單位長的速度運(yùn)動.P,Q分別從點(diǎn)A,C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動.在運(yùn)動過程中,△PCQ關(guān)于直線PQ對稱的圖形是△PDQ.設(shè)運(yùn)動時(shí)間為t(秒).
(1)設(shè)四邊形PCQD的面積為y,求y與t的函數(shù)關(guān)系式;
(2)t為何值時(shí),四邊形PQBA是梯形;
(3)是否存在時(shí)刻t,使得PD∥AB?若存在,求出t的值;若不存在,請說明理由;
(4)通過觀察、畫圖或折紙等方法,猜想是否存在時(shí)刻t,使得PD⊥AB?若存在,請估計(jì)t的值在括號中的哪個(gè)時(shí)間段內(nèi)(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年河北省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•河北)若△ABC的周長為20cm,點(diǎn)D,E,F(xiàn)分別是△ABC三邊的中點(diǎn),則△DEF的周長為( )
A.5cm
B.10cm
C.15cm
D.cm

查看答案和解析>>

同步練習(xí)冊答案