【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.
(1)求拋物線的表達式;
(2)設拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設△PBC的面積為S.
①求S關于t的函數(shù)表達式;
②求P點到直線BC的距離的最大值,并求出此時點P的坐標.
【答案】(1)y=﹣x2+2x+3.(2)當t=2時,點M的坐標為(1,6);當t≠2時,不存在,理由見解析;(3)y=﹣x+3;P點到直線BC的距離的最大值為,此時點P的坐標為(,).
【解析】
(1)由點A、B的坐標,利用待定系數(shù)法即可求出拋物線的表達式;
(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據點C的坐標利用平行四邊形的性質可求出點P、M的坐標;當t≠2時,不存在,利用平行四邊形對角線互相平分結合CE≠PE可得出此時不存在符合題意的點M;
(3)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標利用待定系數(shù)法可求出直線BC的解析式,根據點P的坐標可得出點F的坐標,進而可得出PF的長度,再由三角形的面積公式即可求出S關于t的函數(shù)表達式;
②利用二次函數(shù)的性質找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點到直線BC的距離的最大值,再找出此時點P的坐標即可得出結論.
(1)將A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,
得,解得:,
∴拋物線的表達式為y=﹣x2+2x+3;
(2)在圖1中,連接PC,交拋物線對稱軸l于點E,
∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,
∴拋物線的對稱軸為直線x=1,
當t=2時,點C、P關于直線l對稱,此時存在點M,使得四邊形CDPM是平行四邊形,
∵拋物線的表達式為y=﹣x2+2x+3,
∴點C的坐標為(0,3),點P的坐標為(2,3),
∴點M的坐標為(1,6);
當t≠2時,不存在,理由如下:
若四邊形CDPM是平行四邊形,則CE=PE,
∵點C的橫坐標為0,點E的橫坐標為0,
∴點P的橫坐標t=1×2﹣0=2,
又∵t≠2,
∴不存在;
(3)①在圖2中,過點P作PF∥y軸,交BC于點F.
設直線BC的解析式為y=mx+n(m≠0),
將B(3,0)、C(0,3)代入y=mx+n,
得,解得:,
∴直線BC的解析式為y=﹣x+3,
∵點P的坐標為(t,﹣t2+2t+3),
∴點F的坐標為(t,﹣t+3),
∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,
∴S=PFOB=﹣t2+t=﹣(t﹣)2+;
②∵﹣<0,
∴當t=時,S取最大值,最大值為.
∵點B的坐標為(3,0),點C的坐標為(0,3),
∴線段BC=,
∴P點到直線BC的距離的最大值為,
此時點P的坐標為(,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點,拋物線上另有一點C在x軸下方,且使△OCA∽△OBC.
(1)求線段OC的長度;
(2)設直線BC與y軸交于點M,點C是BM的中點時,求直線BM和拋物線的解析式;
(3)在(2)的條件下,直線BC下方拋物線上是否存在一點P,使得四邊形ABPC面積最大?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,D是AC上一點,AE⊥BD,交BD的延長線于E,CF⊥BD于F.
(1)求證:CF=BE;
(2)若BD=2AE,求證:∠EAD=∠ABE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級學生的身高情況,隨機抽取部分學生的身高進行調查,利用所得數(shù)據繪成如圖統(tǒng)計圖表:
頻數(shù)分布表
身高分組 | 頻數(shù) | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
總計 | 100% |
(1)填空:a=____,b=____;
(2)補全頻數(shù)分布直方圖;
(3)該校九年級共有600名學生,估計身高不低于165cm的學生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車站相距,一列慢車從甲站開出,每小時行駛,一列快車從乙站開出,每小時行駛.(必須用方程解,方程以外的方法不計分)
(1)兩車同時開出,相向而行,多少小時相遇?
(2)兩車同時開出,同向而行,慢車在前,多少小時快車追上慢車?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】墻上釘著用一根彩繩圍成的梯形形狀的飾物,如圖實線所示(單位:cm).小穎將梯形下底的釘子去掉,并將這條彩繩釘成一個長方形,如圖虛線所示.小穎所釘長方形的長、寬各為多少厘米?如果設長方形的長為xcm,根據題意,可得方程為( )
A.2(x+10)=10×4+6×2B.2(x+10)=10×3+6×2
C.2x+10=10×4+6×2D.2(x+10)=10×2+6×2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】O為數(shù)軸的原點,點A、B在數(shù)軸上表示的數(shù)分別為a、b,且滿足(a﹣20)2+|b+10|=0.
(1)寫出a、b的值;
(2)P是A右側數(shù)軸上的一點,M是AP的中點.設P表示的數(shù)為x,求點M、B之間的距離;
(3)若點C從原點出發(fā)以3個單位/秒的速度向點A運動,同時點D從原點出發(fā)以2個單位/秒的速度向點B運動,當?shù)竭_A點或B點后立即以原來的速度向相反的方向運動,直到C點到達B點或D點到達A點時運動停止,求幾秒后C、D兩點相距5個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一圓形零件的標準直徑是,超過規(guī)定直徑長度的數(shù)量(毫米)記作正數(shù),不足規(guī)定直徑長度的數(shù)量(毫米)記作負數(shù),檢驗員某次抽查了零件樣品,檢查的結果如下:
序號 | |||||
直徑長度/ |
(1)試指出哪件樣品的大小最符合要求?
(2)如果規(guī)定誤差的絕對值在之內是正品.誤差的絕對值在之間是次品,誤差的絕對值超過的是廢品,那么上述五件樣品中,哪些是正品,哪些是次品,哪些是廢品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知有理數(shù)在數(shù)軸上所對應的點分別是三點,且滿足:①多項式是關于的二次三項式:②
請在圖1的數(shù)軸上描出三點,并直接寫出三數(shù)之間的大小關系(用“<”連接) ;
點為數(shù)軸上點右側一點,且點到點的距離是到點距離的倍,求點在數(shù)軸上所對應的有理數(shù);
點在數(shù)軸上以每秒個單位長度的速度向左運動,同時點和點在數(shù)軸上分別以每秒個單位長度和個單位長度的速度向右運動(其中),若在整個運動的過程中,點到點的距離與點到點的距離差始終不變,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com