【題目】請把下面證明過程補充完整

如圖,已知ADBCD,點EBA的延長線上,EGBCC,交AC于點F,∠E=∠1.求證:AD平分∠BAC

證明:∵ADBCD,EGBCG ),

∴∠ADC=∠EGC90° ),

ADEG ),

∴∠1=∠2 ),

_____=∠3 ),

又∵∠E=∠1(已知),∴∠2=∠3 ),

AD平分∠BAC

【答案】已知;垂直的定義;同位角相等,兩直線平行;兩直線平行,內(nèi)錯角相等;∠E;兩直線平行,同位角相等;等量代換;角平分線的定義.

【解析】

已知垂直ADBCD,EGBCG,可推得∠ADC=∠EGC90°,同位角相等可推出兩條直線平行,兩條直線平行可推得,內(nèi)錯角和同位角相等,再利用等量代換,可得AD平分∠BAC

ADBCDEGBCG(已知),

∴∠ADC=∠EGC90° 垂直的定義),

ADEG 同位角相等,兩直線平行),

∴∠1=∠2 兩直線平行,內(nèi)錯角相等),

∴∠E=∠3 兩直線平行,同位角相等),

又∵∠E=∠1(已知),

∴∠2=∠3 等量代換),

AD平分∠BAC 角平分線的定義).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】.AOB中∠AOB=,OA=OB=10,分別以OA、OB所在直線為坐標軸建立平面直角坐標系(如圖所示).點P自點A出發(fā)沿線段AB勻速運動到點B停止,同時點D自原點O出發(fā)沿x軸正方向勻速運動,在點P、D運動的過程中,始終滿足PO=PD,過點O、DAB作垂線,垂足分別為點C、E,設(shè)OD的長為x

(1)AP的長(用含x的代數(shù)式表示)

(2)在點P、D的運動過程中,線段PCDE是否相等?若相等,請給予證明;若不相等,請說明理由;

(3)設(shè)以點P、O、D、E為頂點的四邊形的面積為y,請直接寫出yx的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,,,CPCM分別是AB上的高和中線,如果圓A是以點A為圓心,半徑長為2的圓,那么下列判斷正確的是(

A. PM均在圓A內(nèi) B. PM均在圓A

C. P在圓A內(nèi),點M在圓A D. P在圓A外,點M在圓A內(nèi)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(a,1),B(b,﹣2),C(0,c),且(a22++|c+2|0

1)如圖1,求A、BC三點的坐標.

2)如圖2,延長ACP(a,﹣5),連POPB.求

3)將線段AC平移,使點A的對應點E恰好落在y軸正半軸上,點C的對應點為F,連AFy軸于G,當EG3OG時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由相同邊長的小正方形組成的網(wǎng)格圖形,A、B、C都在格點上,利用網(wǎng)格畫圖:(注:所畫線條用黑色簽字筆描黑

1)過點CAB的平行線CF,標出F點;

2)過點BAC的垂線BG,垂足為點G,標出G點;

3)點BAC的距離是線段 的長度;

4)線段BGAB的大小關(guān)系為:BG AB(填、,理由是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚里溫度y(℃)隨時間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線的一部分,請根據(jù)圖中信息解答下列問題:

(1)求k的值;

(2)恒溫系統(tǒng)在一天內(nèi)保持大棚里溫度在15℃及15℃以上的時間有多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=ACAHBC,點EAH上一點,延長AH至點F,使FH=EH.

(1)求證:四邊形EBFC是菱形;

(2)如果∠BAC=ECF,求證:ACCF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黃河,既是一條源遠流長、波瀾壯闊的自然河,又是一條孕育中華民族燦爛文明的母親河.數(shù)學課外實踐活動中,小林和同學們在黃河南岸小路上的AB兩點處,用測角儀分別對北岸的觀景亭D進行測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=200米,求觀景亭D到小路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已的邊上的一點,,=,的中線.

1)若,求的值;

2)求證:的平分線.

查看答案和解析>>

同步練習冊答案