【題目】若正整數(shù)a,b,cabc)滿足a2+b2c2,則稱(a,bc)為一組勾股數(shù)

觀察下列兩類勾股數(shù)

第一類(a是奇數(shù)):(3,4,5);(5,1213);(724,25);

第二類(a是偶數(shù)):(6,810);(8,15,17);(10,2426);

1)請再寫出兩組勾股數(shù),每類各寫一組;

2)分別就a為奇數(shù)、偶數(shù)兩種情形,用a表示bc,并選擇其中一種情形證明(ab,c)是勾股數(shù)

【答案】1)第一組(a是奇數(shù)):9,40,41(答案不唯一);第二組(a是偶數(shù)):1235,37(答案不唯一);(2)當(dāng)a為奇數(shù)時,,;當(dāng)a為偶數(shù)時,;證明見解析.

【解析】

1)根據(jù)勾股數(shù)的定義即可得到結(jié)論;

2)當(dāng)a為奇數(shù)時,當(dāng)a為偶數(shù)時,根據(jù)勾股數(shù)的定義即可得到結(jié)論.

1)第一組(a是奇數(shù)):9,4041(答案不唯一);

第二組(a是偶數(shù)):1235,37(答案不唯一);

2)當(dāng)a為奇數(shù)時,;

當(dāng)a為偶數(shù)時,,;

證明:當(dāng)a為奇數(shù)時,a2+b2

∴(a,b,c)是“勾股數(shù)”.

當(dāng)a為偶數(shù)時,a2+b2

∴(a,b,c)是“勾股數(shù)”

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=ACBC=20,DEABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個動點(diǎn),連接DN,ME,DNME相交于點(diǎn)O.若OMN是直角三角形,則DO的長是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市侯鎮(zhèn)二中校園內(nèi)有一荷花池,荷花池北側(cè)有一水塔.九年級數(shù)學(xué)興趣小組欲利用所學(xué)知識測量水塔高度.測量過程如下:先在荷花池南側(cè)A點(diǎn)由測角儀AE測得塔頂仰角為30°,再在荷花池北側(cè)B點(diǎn)由測角儀BF測得塔頂仰角為45°,荷花池AB長為15米,測角儀高均為1.5米,已知A、B、C三點(diǎn)在一條直線上,請根據(jù)以上條件求塔高CD?(保留兩位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價為 20 /千克,售價不低于 20 /千克,且不超過 32 /千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量 y(千克與該天的售價 x(/千克滿足如下表所示的一次函數(shù)關(guān)系.

銷售量 y(千克)

34.8

32

29.6

28

售價 x(元/千克)

22.6

24

25.2

26

(1)某天這種水果的售價為 23.5 /千克,求當(dāng)天該水果的銷售量.

(2)如果某天銷售這種水果獲利 150 元,那么該天水果的售價為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為5的菱形ABCD中,對角線AC長為6,點(diǎn)E在對角線BD上且tanEAC=,則BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】速度分別為100km/hakm/h0a100)的兩車分別從相距s千米的兩地同時出發(fā),沿同一方向勻速前行.行駛一段時間后,其中一車按原速度原路返回,直到與另一車相遇時兩車停止.在此過程中,兩車之間的距離ykm)與行駛時間th)之間的函數(shù)關(guān)系如圖所示.下列說法:①a60;②b2;③cb+;④若s60,則b.其中說法正確的是(  )

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 y=x+1 與 y 軸交于點(diǎn) A1,以 OA1為邊,在 y 軸右側(cè)作正方形 OA1B1C1,延長 C1B1交直線 y=x+1 于點(diǎn) A2,再以 C1A2為邊作正方形,…,這些正方形與直線 y=x+1 的交點(diǎn)分別為 A1,A2,A3,…,An,則點(diǎn) Bn 的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進(jìn)行了簡單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.

請根據(jù)圖中的信息,回答下列問題:

(1)這次抽樣調(diào)查中共調(diào)查了  人;

(2)請補(bǔ)全條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是  

(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長為半徑畫弧分別交AB,AC于點(diǎn)MN,再分別以點(diǎn)M,N為圓心大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號)

查看答案和解析>>

同步練習(xí)冊答案