【題目】如圖,在在四邊形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒2cm的速度沿線段AD向點(diǎn)D運(yùn)動(dòng);動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)以每秒3cm的速度沿CB向B點(diǎn)運(yùn)動(dòng),當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒,回答下列問(wèn)題:
(1)BC= cm;
(2)當(dāng)t= 秒時(shí),四邊形PQBA成為矩形.
(3)是否存在t,使得△DQC是等腰三角形?若存在,請(qǐng)求出t的值;若不存在,說(shuō)明理由.
【答案】(1)18;(2);(3)存在t,使得△DQC是等腰三角形,此時(shí)t的值為秒或4秒或秒.
【解析】
(1)作DE⊥BC于E,則四邊形ABED為矩形.在直角△CDE中,已知DC、DE的長(zhǎng),根據(jù)勾股定理可以計(jì)算EC的長(zhǎng)度,根據(jù)BC=BE+EC即可求出BC的長(zhǎng)度;
(2)當(dāng)PA=BQ時(shí),四邊形PQBA為矩形,根據(jù)PA=QB列出關(guān)于t的方程,解方程即可;
(3)因?yàn)槿呏校績(jī)蓷l邊都有相等的可能,所以應(yīng)考慮三種情況.結(jié)合路程=速度×?xí)r間求得其中的有關(guān)的邊,運(yùn)用等腰三角形的性質(zhì)和解直角三角形的知識(shí)求解.
解:根據(jù)題意得:PA=2t,CQ=3t,則PD=AD﹣PA=12﹣2t,
(1)如圖,過(guò)D點(diǎn)作DE⊥BC于E,則四邊形ABED為矩形,DE=AB=8cm,AD=BE=12cm,
在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,
∴EC==6cm,
∴BC=BE+EC=18cm.
故答案為18;
(2)∵AD∥BC,∠B=90°
∴當(dāng)PA=BQ時(shí),四邊形PQBA為矩形,
即2t=18﹣3t,
解得t=秒,
故當(dāng)t=秒時(shí)四邊形PQBA為矩形;
故答案為
(3)△DQC是等腰三角形時(shí),分三種情況討論:
①當(dāng)QC=DC時(shí),即3t=10,
∴t=;
②當(dāng)DQ=DC時(shí),=6,
∴t=4;
③當(dāng)QD=QC時(shí),3t=5,
∴t=.
故存在t,使得△DQC是等腰三角形,此時(shí)t的值為秒或4秒或秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】合肥市某學(xué)校搬遷,教師和學(xué)生的寢室數(shù)量在增加,若該校今年準(zhǔn)備建造三類(lèi)不同的寢室,分別為單人間(供一個(gè)人住宿),雙人間(供兩個(gè)人住宿),四人間(供四個(gè)人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.
(1)若2015年學(xué)校寢室數(shù)為64個(gè),2017年建成后寢室數(shù)為121個(gè),求2015至2017年的平均增長(zhǎng)率;
(2)若建成后的寢室可供600人住宿,求單人間的數(shù)量;
(3)若該校今年建造三類(lèi)不同的寢室的總數(shù)為180個(gè),則該校的寢室建成后最多可供多少師生住宿?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙A的半徑為1,圓心A點(diǎn)的坐標(biāo)為(1,﹣2).直線OM是一次函數(shù)y=x的圖像.讓⊙A沿y軸正方向以每秒1個(gè)單位長(zhǎng)度移動(dòng),移動(dòng)時(shí)間為t.
(1)填空:
①直線OM與x軸所夾的銳角度數(shù)為 °;
②當(dāng)t= 時(shí),⊙A與坐標(biāo)軸有兩個(gè)公共點(diǎn);
(2)求出運(yùn)動(dòng)過(guò)程中⊙A與直線OM相切時(shí)的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則點(diǎn)B2016的坐標(biāo)為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為3的正方形ABCD中,點(diǎn)E是BC邊上的點(diǎn),EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點(diǎn)P,則PC的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠B=∠C=30°,點(diǎn)O是BC邊上一點(diǎn),以點(diǎn)O為圓心、OB為半徑的圓經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)D.
⑴ 試說(shuō)明AC與⊙O相切;
⑵ 若,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(定義)從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
(1)如圖1,△ABC中,∠A=40°,∠B=60°,CD平分∠ACB.求證:CD為△ABC的完美分割線;
(2)在△ABC中,CD是△ABC的完美分割線,其中△ACD為等腰三角形,設(shè)∠A=x°,∠B=y°,則y與x之間的關(guān)系式為_____________________________;
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用合適的方法解方程:
(1)(2t+3)2=3(2t+3)
(2)(2x﹣1)2=9(x﹣2)2
(3)2x2=5x﹣1
(4)x2+4x﹣5=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電商時(shí)代使得網(wǎng)購(gòu)更加便捷和普及.小張響應(yīng)國(guó)家號(hào)召,自主創(chuàng)業(yè),開(kāi)了家淘寶店.他購(gòu)進(jìn)一種成本為100元/件的新商品,在試銷(xiāo)中發(fā)現(xiàn):銷(xiāo)售單價(jià)x(元)與每天銷(xiāo)售量y(件)之間滿足如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若某天小張銷(xiāo)售該產(chǎn)品獲得的利潤(rùn)為1200元,求銷(xiāo)售單價(jià)x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com