【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(3,3),點(diǎn)B(4,0),點(diǎn)C(0,﹣1).
(1)以點(diǎn)C為中心,把△ABC逆時(shí)針旋轉(zhuǎn)90°,請(qǐng)?jiān)趫D中畫(huà)出旋轉(zhuǎn)后的圖形△A′B′C,點(diǎn)B′的坐標(biāo)為________;
(2)在(1)的條件下,求出點(diǎn)A經(jīng)過(guò)的路徑的長(zhǎng)(結(jié)果保留π).
【答案】(1)圖見(jiàn)解析;B′的坐標(biāo)為(﹣1,3);(2).
【解析】
(1)過(guò)點(diǎn)C作B′C⊥BC,根據(jù)網(wǎng)格特征使B′C=BC,作A′C⊥AC,使A′C=AC,連接A′B′,△A′B′C即為所求,根據(jù)B′位置得出B′坐標(biāo)即可;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠ACA′=90°,利用勾股定理可求出AC的長(zhǎng),利用弧長(zhǎng)公式求出的長(zhǎng)即可.
(1)如圖所示,△A′B′C即為所求;
B′的坐標(biāo)為(﹣1,3).
(2)∵A(3,3),C(0,﹣1).
∴AC==5,
∵∠ACA′=90°,
∴點(diǎn)A經(jīng)過(guò)的路徑的長(zhǎng)為:=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知如圖1,在中,,,點(diǎn)在內(nèi)部,點(diǎn)在外部,滿足,且.求證:.
(2)已知如圖2,在等邊內(nèi)有一點(diǎn),滿足,,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的圖象如圖所示:
(1)將該拋物線向上平移2個(gè)單位,分別交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,則平移后的解析式為 .
(2)判斷△ABC的形狀,并說(shuō)明理由.
(3)在拋物線對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使得以A、C、P為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、C;拋物線y=﹣x2+bx+c經(jīng)過(guò)B、C兩點(diǎn),并與x軸交于另一點(diǎn)A.
(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)P(x,y)是(1)所得拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l⊥x軸于點(diǎn)M,交直線BC于點(diǎn)N.
①若點(diǎn)P在第一象限內(nèi).試問(wèn):線段PN的長(zhǎng)度是否存在最大值?若存在,求出它的最大值及此時(shí)x的值;若不存在,請(qǐng)說(shuō)明理由;
②求以BC為底邊的等腰△BPC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把邊長(zhǎng)為1的正方形ABCD繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB′C′D′,則它們的公共部分的面積等于_____.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923101670465536/1923902127538176/STEM/3534c7f6f1a5489684ae6308493b71da.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑DE⊥AB于點(diǎn)F,交BC于點(diǎn) M,DE的延長(zhǎng)線與AC的延長(zhǎng)線交于點(diǎn)N,連接AM.
(1)求證:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)M是BC邊上的動(dòng)點(diǎn)(不與B,C重合),點(diǎn)N是AM的中點(diǎn),過(guò)點(diǎn)N作EF⊥AM,分別交AB,BD,CD于點(diǎn)E,K,F,設(shè)BM=x.
(1)AE的長(zhǎng)為______(用含x的代數(shù)式表示);
(2)設(shè)EK=2KF,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過(guò)點(diǎn)A1、A2、A3作y軸的平行線,與反比例函數(shù)的圖象分別交于點(diǎn)B1、B2、B3,分別過(guò)點(diǎn)B1、B2、B3作x軸的平行線,分別與y軸交于點(diǎn)C1、C2、C3,連結(jié)OB1、OB2、OB3,那么圖中陰影部分的面積之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D.
(1)在圖(1)中,用直尺和圓規(guī)過(guò)點(diǎn)D作⊙O的切線DE交BC于點(diǎn)E;(保留作圖痕跡,不寫(xiě)作法)
(2)如圖(2),如果⊙O的半徑為3,ED=4,延長(zhǎng)EO交⊙O于F,連接DF,與OA交于點(diǎn)G,求OG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com